
Second International Workshop on

Formal Techniques for Safety-Critical Systems

(FTSCS 2013)

Preliminary Proceedings

Editors: Cyrille Artho and Peter Csaba Ölveczky

Preface

This volume contains the preliminary proceedings of the Second International
Workshop of Formal Techniques for Safety-Critical Systems (FTSCS 2013), held
in Queenstown, New Zealand, on October 29–30, 2013, as a satellite event of the
ICFEM conference.

The aim of this workshop is to bring together researchers and engineers
who are interested in the application of formal and semi-formal methods to
improve the quality of safety-critical computer systems. FTSCS strives strives
to promote research and development of formal methods and tools for industrial
applications, and is particularly interested in industrial applications of formal
methods. Specific topics include, but are not limited to:

– case studies and experience reports on the use of formal methods for ana-
lyzing safety-critical systems, including avionics, automotive, medical, and
other kinds of safety-critical and QoS-critical systems;

– methods, techniques and tools to support automated analysis, certification,
debugging, etc., of complex safety/QoS-critical systems;

– analysis methods that address the limitations of formal methods in industry
(usability, scalability, etc.);

– formal analysis support for modeling languages used in industry, such as
AADL, Ptolemy, SysML, SCADE, Modelica, etc.; and

– code generation from validated models.

The workshop received 33 submissions; 32 of these were regular papers and 1
was a work-in-progress/position paper. Each submission was reviewed by three
referees; based on the reviews and extensive discussions, the program committee
selected 17 regular papers and one work-in-progress paper for presentation at the
workshop and inclusion in this volume. In addition, our program also includes
an invited talk by Ian Hayes.

Revised versions of accepted regular papers will appear in the post-procee-
dings of FTSCS 2013 that will be published as a volume in Springer’s Communi-
cations in Computer and Information Science (CCIS) series. Extended versions
of selected papers from the workshop will also appear in a special issue of the
Science of Computer Programming journal.

Many colleagues and friends have contributed to FTSCS 2013. First, we
would like to thank Kokichi Futatsugi and Hitoshi Ohsaki for initiating this
series of workshops. We thank Ian Hayes for accepting our invitation to give an
invited talk and the authors who submitted their work to FTSCS 2013 and who,
through their contributions, make this workshop an interesting event. We are
particularly grateful that so many well known researchers agreed to serve on the
program committee, and that they all provided timely, insightful, and detailed
reviews.

We also thank the editors of Communications in Computer and Information
Science for agreeing to publish the proceedings of FTSCS 2013 as a volume in
their series, and Jan A. Bergstra and Bas van Vlijmen for accepting our proposal
to devote a special issue of the Science of Computer Programming journal to

I

extended versions of selected papers from FTSCS 2013. Furthermore, Jing Sun
has been very helpful with the local arrangements. Finally, we thank Andrei
Voronkov for the excellent EasyChair conference systems.

We hope that you will all enjoy both the scientific program and the workshop
venue!

October, 2013 Cyrille Artho
Peter Csaba Ölveczky

II

Workshop Organization

Workshop Chair

Hitoshi Ohsaki AIST

Program Chairs

Cyrille Artho AIST

Peter Csaba Ölveczky University of Oslo

Program Committee

Erika Abraham RWTH Aachen University
Musab Alturki King Fahd University of Petroleum and Minerals
Toshiaki Aoki JAIST
Farhad Arbab Leiden University and CWI
Cyrille Artho AIST
Saddek Bensalem Verimag
Armin Biere Johannes Kepler University
Santiago Escobar Universidad Politecnica de Valencia
Ansgar Fehnker University of the South Pacific
Mamoun Filali IRIT
Bernd Fischer Stellenbosch University/University of Southampton
Kokichi Futatsugi JAIST
Klaus Havelund NASA JPL/California Institute of Technology
Marieke Huisman University of Twente
Ralf Huuck NICTA
Fuyuki Ishikawa National Institute of Informatics
Takashi Kitamura AIST
Alexander Knapp Augsburg University
Paddy Krishnan Oracle Labs Brisbane
Yang Liu Nanyang Technological University
Robi Malik University of Waikato
Cesar Munoz NASA Langley
Tang Nguyen Hanoi University of Industry
Thomas Noll RWTH Aachen University

Peter Ölveczky University of Oslo
Paul Pettersson Mälardalen University
Camilo Rocha Escuela Colombiana de Ingenieria
Grigore Roşu University of Illinois at Urbana-Champaign

III

Neha Rungta NASA Ames Research Center
Ralf Sasse ETH Zürich
Oleg Sokolsky University of Pennsylvania
Sofiene Tahar Concordia University
Carolyn Talcott SRI International
Tatsuhiro Tsuchiya Osaka University
Michael Whalen University of Minnesota
Peng Wu Chinese Academy of Sciences

External Reviewers

Daghar, Alaeddine Elleuch, Maissa
Enoiu, Eduard Paul Helali, Ghassen
Jansen, Nils Kong, Weiqiang
Meredith, Patrick Rongjie, Yan
Santiago, Sonia

IV

Table of Contents

Towards Structuring System Specifications with Time Bands Using
Layers of Rely-Guarantee Conditions . 1

Ian J. Hayes

Certainly Unsupervisable States . 3

Simon Ware, Robi Malik, Sahar Mohajerani and Martin Fabian

Wind Turbine System: An Industrial Case Study in Formal Modeling
and Verification . 19

Jagadish Suryadevara, Gaetana Sapienza, Cristina Seceleanu, Tiberiu
Seceleanu, Stein Erik Ellevseth and Paul Pettersson

Precise Documentation and Validation of Requirements 35

Chen-Wei Wang, Jonathan Ostroff and Simon Hudon

Reflections on Verifying Software with Whiley . 51

David Pearce and Lindsay Groves

An UPPAAL Framework for Model Checking Automotive Systems
with FlexRay Protocol . 67

Xiaoyun Guo, Hsin-Hung Lin, Kenro Yatake and Toshiaki Aoki

Early Analysis of Soft Error Effects for Aerospace Applications using
Probabilistic Model Checking . 83

Khaza Anuarul Hoque, Otmane Ait Mohamed, Yvon Savaria and Claude
Thibeault

TTM/PAT: Specifying and Verifying Timed Transition Models 99

Jonathan Ostroff, Chen-Wei Wang, Yang Liu, Jun Sun and Simon
Hudon

On the cloud-enabled refinement checking of railway signalling
interlockings . 115

Andrew Simpson and Jaco Jacobs

Counterexample generation for hybrid automata . 131

Johanna Nellen, Erika Abraham, Xin Chen and Pieter Collins

Compositional Nonblocking Verification with Always Enabled Events
and Selfloop-only Events . 147

Colin Pilbrow and Robi Malik

Formalizing and Verifying Function Blocks using Tabular Expressions
and PVS . 163

Linna Pang, Chen-Wei Wang, Mark Lawford and Alan Wassyng

V

Parametric Schedulability Analysis of Fixed Priority Real-Time
Distributed Systems . 179

Youcheng Sun, Romain Soulat, Giuseppe Lipari, Etienne André and
Laurent Fribourg

Model Based Testing from Controlled Natural Language Requirements . . . 195
Gustavo Carvalho, Flavia Barros, Florian Lapschies, Uwe Schulze and
Jan Peleska

Refinement Tree and Its Patterns: a Graphical Approach for Event-B
Modeling . 211

Kriangkrai Traichaiyaporn and Toshiaki Aoki

Formal Semantics and Analysis of Timed Rebeca in Real-Time Maude . . . 227
Zeynab Sabahi Kaviani, Ramtin Khosravi, Marjan Sirjani, Peter Olveczky
and Ehsan Khamespanah

A Strand Space Approach to Provable Anonymity . 243
Yongjian Li and Jun Pang

Creating Visualisations of Formal Models of Interactive Medical Devices . 259
Judy Bowen, Steve Reeves and Steve Jones

With an Open Mind: How to Write Good Models . 264
Cyrille Valentin Artho, Koji Hayamizu, Rudolf Ramler and Yoriyuki
Yamagata

VI

Towards Structuring System Specifications with
Time Bands Using Layers of Rely-Guarantee Conditions

Ian J. Hayes

School of ITEE, The University of Queensland, Brisbane, Australia

Abstract. The overall specification of a cyber-physical system can be given in
terms of the desired behaviour of its physical components operating within the
real world. The specification of its control software can then be derived from the
overall specification and the properties of the real-world phenomena, including
their relationship to the computer system’s sensors and actuators. The control
software specification them becomes a combination of the guarantee it makes
about the system behaviour and the real-world assumptions it relies upon.
Such specifications can easily become complicated because the complete system
description deals with properties of phenomena at widely different time granu-
larities, as well as handling faults. To help manage this complexity, we consider
layering the specification within multiple time bands, with the specification of
each time band consisting of both the rely and guarantee conditions for that band,
both given in terms of the phenomena of that band. The overall specification is
then the combination of the multiple rely-guarantee pairs. Multiple rely-guarantee
pairs can also be used to handle faults.

Rely-guarantee specifications. Earlier research with Michael Jackson and Cliff Jones
[3, 4] looked at specifying real-time control systems in terms of assumptions about the
behaviour of the system’s environment – a rely condition – and the behaviour to be en-
sured by the system – a guarantee condition – provided its environment ensures the rely
condition continues to hold. Often the specification of the system’s desired behaviour
is best described in terms of the behaviour of physical objects in the real-world that
are to be controlled by the computer system and rely conditions are needed to link the
real-world phenomena (which may not be directly accessible to the computer) to the
computer’s view of the world, i.e. the computer’s sensors and actuators.

Multiple rely-guarantee pairs. Our earlier work [4] allowed a specification to be struc-
tured into multiple rely-guarantee pairs, where each guarantee is paired with a rely
condition expressing the assumptions about the behaviour of the environment needed
to be able to achieve that guarantee. This allows one to separate different aspects of the
behaviour of a system so that each guarantee is paired with its corresponding rely. It
also allows one to separate the specification of “normal” behaviour of the system when
the environment is behaving correctly according to the normal rely, and a fall-back or
degraded mode of behaviour when the normal rely condition does not hold but a weaker
rely does hold.

1

The time bands framework. Too often when describing of a system’s specification (or
requirements), the basic operation of the system gets lost in a plethora of low-level
detail. For real-time systems it has been observed that it helps to view the system at
multiple time bands or scales [1, 2]. The phenomena relevant at one time band may
be different to those at a finer-grained (lower) time band. The behaviour of a system
may be specified by describing aspects of the behaviour separately for each time band
in terms of the phenomena of that band. For example, an “instantaneous” event at one
time band may correspond to an activity consisting of a set of events (occurring close
together) at the next lower time band. Events at the lower time band may be defined in
terms of phenomena only “visible” at that time band.

Rely-guarantee for each time band. The specification of the behaviour for each time
band can be given in terms of a rely condition giving assumed properties of the environ-
ment and a guarantee of the behaviour of the system, both in terms of the phenomena of
the time band. In this way the behaviour of the overall system is described in terms of
multiple rely-guarantee pairs (as described above) with at least one rely-guarantee pair
for each time band used in structuring the description of the system behaviour.

Acknowledgements. The research presented here is based on joint research with Alan
Burns, Brijesh Dongol, Michael Jackson and Cliff Jones. The author’s research was
supported by Australian Research Council Grants DP0987452 and DP130102901.

References

1. Alan Burns and Gordon Baxter. Time bands in systems structure. In D. Besnard, C. Gacek,
and C. B. Jones, editors, Structure for Dependability: Computer-Based Systems from an In-
terdisciplinary Perspective, pages 74–90. Springer, 2006.

2. Alan Burns and Ian J. Hayes. A timeband framework for modelling real-time systems. Real-
Time Systems, 45(1–2):106–142, June 2010.

3. I.J. Hayes, M.A. Jackson, and C.B. Jones. Determining the specification of a control system
from that of its environment. In K. Araki, S. Gnesi, and D. Mandrioli, editors, FME 2003:
Formal Methods, volume 2805 of LNCS, pages 154–169. Springer Verlag, 2003.

4. Cliff B. Jones, Ian J. Hayes, and Michael A. Jackson. Deriving specifications for systems
that are connected to the physical world. In Jim Woodcock, editor, Essays in Honour of Dines
Bjørner and Zhou Chaochen on the Occassion of their 70th Birthdays, volume 4700 of Lecture
Notes in Computer Science, pages 364–390. Springer Verlag, 2007.

2

Certainly Unsupervisable States

Simon Ware1, Robi Malik1, Sahar Mohajerani2, and Martin Fabian2

1 Department of Computer Science,
University of Waikato, Hamilton, New Zealand

{siw4,robi}@waikato.ac.nz
2 Department of Signals and Systems,

Chalmers University of Technology, Gothenburg, Sweden
{mohajera,fabian}@chalmers.se

Abstract. This paper proposes an abstraction method for compositional synthe-
sis.Synthesisis a method to automatically compute acontrol programor super-
visor that restricts the behaviour of a given system to ensure safety and liveness.
Compositional synthesisuses repeated abstraction and simplification to combat
the state-space explosion problem for large systems. The abstraction method pro-
posed in this paper finds and removes the so-calledcertainly unsupervisable
states. By removing these states at an early stage, the final state space can be
reduced substantially. The paper describes an algorithm with cubic time complex-
ity to compute the largest possible set of removable states. A practical example
demonstrates the feasibility of the method to solve real-world problems.

1 Introduction

Reactive systemsare used extensively to control safety-critical applications, where a
small error can result in huge financial or human losses. Withtheir size and complexity
continuously increasing, there is an increasing demand forformal modelling and anal-
ysis.Model checking[4] has been used successfully to automatically detect errors in
reactive systems. In some cases, it is possible to go furtherandsynthesise, i.e., automat-
ically compute a controlling agent that removes certain kinds of errors from a system.

The controller synthesis problem has been studied by several researchers in com-
puting and control. The synthesis of a stand-alone controller from a temporal logic
specification is studied in [7, 19]. Synthesis has been generalised to the extraction of
an environment to interact with a given softwareinterface[1], and to the construction
controllers interacting with a givenenvironmentor plant [2,5]. Supervisory control the-
ory [20] of discrete event systems provides a framework to synthesise asupervisorthat
restricts the behaviour of a given plant as little as possible while ensuring the safety and
liveness properties ofcontrollability andnonblocking.

Straightforward synthesis algorithms explore the completemonolithicstate space of
the system, and are therefore limited by the well-knownstate-space explosionproblem.
The sheer size of the supervisor also makes it humanly incomprehensible, which hin-
ders acceptance of the synthesis approach in industrial settings. These problems are ad-
dressed bycompositionalmethods [3,8]. If a temporal logic specification is the conjunc-
tion of several requirements, it is possible to synthesise separate controller components

3

for each requirement [5, 7]. Compositional approaches in supervisory control [9, 16]
exploit the structure of the model of the plant to be controlled, which typically consists
of several interacting components. These approaches avoidconstructing the full state
space by first simplifying individual components, then applying synchronous composi-
tion step by step, and simplifying the intermediate resultsagain.

This kind of compositional synthesis requires specific abstraction methods to guar-
antee a least restrictive, controllable, and nonblocking final synthesis result.Supervision
equivalence[9] andsynthesis abstraction[16] have been proposed for this purpose, and
several abstraction methods to simplify automata preserving these properties are known.

This paper proposes another abstraction method that can be used in compositional
synthesis frameworks such as [9,16]. The proposed method finds all the states that will
certainly be removed by any supervisor. Removing these so-called certainly unsuper-
visable statesat an early stage reduces the state space substantially. Previously,halfway
synthesis[9] was used for this purpose, which approximates the removable states. The
set of certainly unsupervisable states is the largest possible set of removable states, and
it can be computed in the same cubic complexity as halfway synthesis.

This paper is organised as follows. Section 2 introduces theterminology of super-
visory control theory [20] and the framework of compositional synthesis [9, 16]. Next,
Section 3 explains the ideas of compositional synthesis andcertainly unsupervisable
states using the example of a manufacturing system. Section4 presents the results of
this paper: it defines the set of certainly unsupervisable states, gives an algorithm to
compute it, performs complexity analysis, and compares certainly unsupervisable states
to halfway synthesis. Finally, Section 5 adds some concluding remarks.

2 Preliminaries

2.1 Events and Languages

Discrete event systems are modelled using events and languages [20].Eventsrepresent
incidents that cause transitions from one state to another and are taken from a finite
alphabetΣ. For the purpose of supervisory control, the alphabet is partitioned into two
disjoint subsets, the setΣc of controllableevents and the setΣu of uncontrollableevents.
Controllable events can be disabled by a supervising agent,while uncontrollable events
occur spontaneously. In addition, thesilent controllableeventτc ∈ Σc and thesilent
uncontrollableeventτu ∈ Σu denote transitions that are not taken by any component
other than the one being considered. The set of all finitetracesof events fromΣ, in-
cluding theempty traceε, is denoted byΣ∗. A subsetL⊆ Σ∗ is called alanguage. The
concatenationof two tracess, t ∈ Σ∗ is written asst.

2.2 Nondeterministic Automata

System behaviours are typically modelled by deterministicautomata, but nondetermin-
istic automata may arise as intermediate results during abstraction.

Definition 1. A (nondeterministic) finite automaton is a tupleG= 〈Σ,Q,→,Q◦,Qω〉,
whereΣ is a finite set of events,Q is a finite set ofstates,→ ⊆ Q×Σ×Q is thestate

4

H1

fetch1 !put1

B1

!put1

!put1

!put1

get1

get1

⊥

H1 ‖B1 0

1 2

3 4

5

6 7
fetch1

fetch1

fetch1

fetch1

!put1

!put1

!put1

get1 get1

get1

get1

S 0

1 2

3 4

fetch1

fetch1

!put1

!put1
get1

get1get1

Fig. 1. Simple manufacturing system. Eventsfetch1 andget1 are controllable, while !put1 is
uncontrollable.

transition relation, Q◦ ⊆Q is the set ofinitial states, andQω ⊆Q is the set ofaccepting

states. G is deterministicif |Q◦| ≤ 1 andτu,τc /∈ Σ, and for all transitionsx
σ→ y1 and

x
σ→ y2 it holds thaty1 = y2.

The transition relation is written in infix notationx
σ→ y, and is extended to traces

and languages in the standard way. For example,x
τ∗uσ−−→ y means that there exists a

possibly empty sequence ofτu-transitions followed by aσ -transition that leads from
statex to y. Furthermore,x

s→ meansx
s→ y for somey ∈ Q, andx→ y meansx

s→ y
for somes∈ Σ∗. These notations also apply to state sets and to automata:X

s→ Y for
X,Y ⊆Q meansx

s→ y for somex∈ X andy∈Y, andG
s→ x meansQ◦ s→ x.

Example 1. Fig. 1 shows automata models of a simple manufacturing system consist-
ing of a handlerH1 and a bufferB1. The handler fetches a workpiece (fetch1) and then
puts it into the buffer (!put1). The event !put1 also increases the number of workpieces
in the buffer by 1. Afterwards the buffer can release the workpiece (get1), reducing the
number of workpieces in the buffer by 1. The buffer can store only two workpieces,
adding more workpieces causes overflow as represented by thestate⊥.

Definition 2. Let G1 = 〈Σ1,Q1,→1,Q
◦
1,Q

ω
1 〉 and G2 = 〈Σ2,Q2,→2,Q

◦
2,Q

ω
2 〉 be two

automata. Thesynchronous compositionof G1 andG2 is

G1‖G2 = 〈Σ1∪Σ2,Q1×Q2,→,Q◦1×Q◦2,Q
ω
1 ×Qω

2 〉 (1)

where

– (x1,x2)
σ→ (y1,y2), if σ ∈ (Σ1∩Σ2)\{τu,τc}, x1

σ→1 y1, andx2
σ→2 y2;

– (x1,x2)
σ→ (y1,x2), if σ ∈ (Σ1\Σ2)∪{τu,τc} andx1

σ→1 y1;
– (x1,x2)

σ→ (x1,y2), if σ ∈ (Σ2\Σ1)∪{τu,τc} andx2
σ→2 y2.

Automata are synchronised in lock-step synchronisation [11]. Shared events must
be executed by all automata together, while events used by only one automaton (and
the silent eventsτu andτc) are executed by only that automaton. Fig. 1 shows the syn-
chronous compositionH1‖B1 of the automata mentioned in Example 1.

Another common operation in compositional synthesis ishiding, which removes the
identity of certain events and in general produces a nondeterministic automaton.

5

Definition 3. Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton andϒ ⊆ Σ. The result of
controllability preserving hidingof ϒ from G is G\! ϒ = 〈Σ\ϒ,Q,→! ,Q

◦,Qω〉, where

→! is obtained from→ by replacing each transitionx
σ→ y such thatσ ∈ ϒ by x

τc→ y if
σ ∈ Σc or byx

τu→ y if σ ∈ Σu.

2.3 Supervisory Control Theory

Supervisory control theory[20] provides a means to automatically compute so-called
supervisorsthat control a given system to perform some desired functionality. Given
an automaton model of the possible behaviour of a physical system, called theplant, a
supervisor is sought to restrict the behaviour in such a way that only a certain subset of
the state space is reachable. The supervisor is implementedas acontrol function[20]

Φ : Q→ 2Σ×Q (2)

that assigns to each statex∈Q the setΦ(x) of transitions to be enabled in this state. That
is, a transitionx

σ→ y with σ ∈ Σc will only be possible under the control of supervisorΦ
if (σ ,y) ∈ Φ(x). Uncontrollable events cannot be disabled, so it is required thatΣu×
Q⊆ Φ(x) for all x ∈ Q. Controllable transitions can be disabled individually, i.e., if
a nondeterministic system contains multiple outgoing controllable transitions from a
statex, then the supervisor may disable some of them while leaving others enabled [9].
If the plant is modelled by a nondeterministic automaton, then such a supervisor can be
represented as asubautomaton.

Definition 4. [9] Let G= 〈Σ,QG,→G,Q◦G,Qω
G〉 andK = 〈Σ,QK ,→K ,Q◦K ,Qω

K 〉 be two
automata.K is asubautomatonof G, writtenK ⊆G, if QK ⊆QG,→K ⊆→G, Q◦K ⊆Q◦G,
andQω

K ⊆Qω
G.

A subautomatonK of G contains a subset of the states and transitions ofG. It rep-
resents a supervisor that enables only those transitions present inK, i.e., it implements
the control function

ΦK(x) = (Σu×Q)∪{(σ ,y) ∈ Σc×Q | x σ→K y} . (3)

As uncontrollable events cannot be disabled, the control function includes all possi-
ble uncontrollable transitions. Then not every subautomaton of G can be implemented
through control. The property ofcontrollability [20] characterises those behaviours than
can be implemented.

Definition 5. [9] Let G = 〈Σ,QG,→G,Q◦G,Qω
G〉 andK = 〈Σ,QK ,→K ,Q◦K ,Qω

K 〉 such
thatK ⊆G. ThenK is calledcontrollablein G if, for all statesx∈QK andy∈QG and
for every uncontrollable eventυ ∈ Σu such thatx

υ→G y, it also holds thatx
υ→K y.

If a subautomatonK is controllable inG, then every uncontrollable transition pos-
sible inG is also contained inK. In Fig. 1, automatonS is controllable inH1‖B1. How-
ever, if state 5 was to be included inS, then because of the uncontrollable transition

6

5
!put1−−−→ 6, state 6 would also have to be included forS to be controllable. Controlla-

bility ensures that the control function (3) can be implemented without disabling any
uncontrollable events.

In addition to controllability, the supervised behaviour is typically required to be
nonblocking.

Definition 6. [15] Let G= 〈Σ,Q,→,Q◦,Qω〉 be an automaton.G is callednonblock-
ing if for every statex∈Q such thatQ◦→ x it holds thatx→Qω .

In a nonblocking automaton, termination is possible from every reachable state. The
nonblocking property, also referred to asweak termination[17], ensures the absence
of livelocks and deadlocks. Combined with controllability, the requirement to be non-
blocking can express arbitrary safety properties [9]. For example, the buffer modelB1

in Fig. 1 contains the !put1-transition to the blocking state⊥ to specify a supervised be-
haviour that does not allow a third workpiece to be placed into the buffer when it already
contains two workpieces, i.e., it requests a supervisor that prevents buffer overflow.

Given a plant automatonG, the objective ofsupervisor synthesis[20] is to com-
pute a subautomatonK ⊆ G, which is controllable and nonblocking and restricts the
behaviour ofG as little as possible. The set of subautomata ofG forms a lattice [6], and
the upper bound of a set of controllable and nonblocking subautomata in this lattice is
again controllable and nonblocking.

Theorem 1. [9] Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. There exists a unique
subautomaton supC(G) ⊆ G such that supC(G) is nonblocking and controllable inG,
and such that for every subautomatonS⊆ G that is also nonblocking and controllable
in G, it holds thatS⊆ supC(G).

The subautomaton supC(G) is the uniqueleast restrictivesub-behaviour ofG that
can be achieved by any possible supervisor. It can be computed using a fixpoint itera-
tion [9], by iteratively removing blocking states and states leading to blocking states via
uncontrollable events, until a fixpoint is reached.

Definition 7. [9] Let G= 〈Σ,Q,→,Q◦,Qω〉 be an automaton. Therestrictionof G to
X ⊆Q is G|X = 〈Σ,X,→|X,Q◦∩X,Qω ∩X〉, where→|X = {(x,σ ,y) ∈→ | x,y∈ X}.
Definition 8. [9] Let G= 〈Σ,Q,→,Q◦,Qω〉 be an automaton. Thesynthesis stepop-
eratorΘG : 2Q→ 2Q for G is defined asΘG(X) = Θcont

G (X)∩Θcont
G (X), where

Θcont
G (X) = {x∈ X | for all transitionsx

υ→ y with υ ∈ Σu it holds thaty∈ X} ; (4)

Θnonb
G (X) = {x∈ X | x→|X Qω } . (5)

Θcont
G captures controllability, andΘnonb

G captures nonblocking. The least restrictive
synthesis result supC(G) is obtained by restrictingG to the greatest fixpoint ofΘG.

Theorem 2. [9] Let G = 〈Σ,Q,→,Q◦,Qω〉. The synthesis step operatorΘG has a
greatest fixpoint gfpΘG = Θ̂G ⊆ Q, such thatG|Θ̂G

is the greatest subautomaton ofG
that is both controllable inG and nonblocking, i.e.,

supC(G) = G|Θ̂G
. (6)

7

Example 2. The automatonH1‖B1 in Fig. 1 is blocking, because the tracefetch1!put1
fetch1!put1fetch1!put1 leads to state 6, from where no accepting state is reachable.To
prevent this blocking situation, event !put1 needs to be disabled in state 5. However,
!put1 is an uncontrollable event that cannot be disabled by the supervisor, so the best
feasible solution is to disable the controllable eventfetch1 in state 3. Fig. 1 shows the
least restrictive supervisorS= supC(H1‖B1).

In the finite-state case, the state set of the least restrictive supervisor can be calcu-
lated as the limit of the sequenceX0 = Q, Xi+1 = ΘG(Xi). This iteration converges in
at most|Q| iterations, and the worst-case time complexity isO(|Q||→|) = O(|Σ||Q|3),
where|Σ|, |Q|, and|→| are the numbers of events, states, and transitions of the plant
automatonG. However, often the behaviour the system is specified by a large num-
ber of synchronised automata, and when measured by the number of components, the
synthesis problem is NP-complete [10].

2.4 Compositional Synthesis

Many discrete event systems aremodularin that they consist of a large number of inter-
acting components. This modularity allows to simplify individual components before
composing them, in many cases avoiding state-space explosion. This idea has been used
successfully for verification of large discrete event systems [8].

Given a system of concurrent plant automata

G = G1‖G2‖ · · · ‖Gn , (7)

the objective of synthesis is to find a least restrictive supervisor, which ensures non-
blocking without disabling uncontrollable events. The standard solution [20] to this
problem is to calculate a finite-state representation of thesynchronous composition (7)
and use a synthesis iteration to calculate supC(G) = supC(G1‖ · · · ‖Gn).

A compositional algorithm tries to find the same result without explicitly calculating
the synchronous product (7). It seeks to abstract individual automataGi by removing
some states or transitions, and replace them by abstracted versionsG̃i . If no more ab-
straction is possible, synchronous composition is computed step by step, abstracting the
intermediate results again.

The individual automataGi typically contain some events that do not appear in any
other automataG j . These events are calledlocal events, denoted by the setϒ in the
following. After hiding the local events, the automatonGi is replaced byGi \! ϒ, which
increases the possibility of further abstraction.

Eventually, the procedure leads to a single automatonG̃, the abstract description
of the systemG . After abstraction, the automaton ofG̃ has less states and transitions
compared to (7). OncẽG is found, the final step is to use it instead of the original
system, to obtain a synthesis result supC(G̃) = supC(G).

The abstraction steps to simplify the individual automataGi must satisfy certain
conditions to guarantee that the synthesis result obtainedfrom the final abstraction is a
correct supervisor for the original system.

8

M2

M1

!put2

B2

!put1

B1

!put3

H3

!put4

H4

H1 H2
B3 B4

get3fetch2fetch1 get4

get2get1 fetch3 fetch4

input2 !output2

!output1 input1

W1

Fig. 2.Manufacturing system overview.

W1 Lock Produce M1 M2

⊥
!output1

!output1
!res

!sus

!lock

!res
!sus

!lock unlock

⊥!output1

!output1

!output1
input1

!output1

fetch1

fetch2

get3

get4

input2 fetch4

fetch3

get2 !output2

get1

Fig. 3.Automata for manufacturing system model. Uncontrollable events are prefixed by !.

Definition 9. Let G and H be two automata with alphabetΣ. ThenG is a synthesis
equivalentto H, writtenG≃synthH, if for every automatonT = 〈ΣT ,QT ,→T ,Q◦T ,Qω

T 〉
it holds that supC(G‖T) = supC(H ‖T).

Def. 9 is a special case of synthesis abstraction [16]. Synthesis equivalence requires
that the abstracted automatonH yields the same supervisor as the original automatonG,
no matter what the remainder of the systemT is.

3 Manufacturing System Example

This section demonstrates compositional synthesis using amodified version of a manu-
facturing system previously studied in [13]. The manufacturing system consists of two
machines (M1 andM2) and four pairs of handlers (Hi) and buffers (Bi) for transferring
workpieces between the machines. Fig. 2 gives an overview ofthe system.

The manufacturing system can produce two types of workpieces. Type I workpieces
are first processed by machineM1 (input1). Then they are fetched by handlerH1 (fetch1)
and placed into bufferB1 (!put1). Next, they are processed byM2 (get1), fetched byH4

(fetch4) and placed intoB4 (!put4). Finally, they are processed byM1 once more (get4),
and released (!output1). Using a switchW1, users can request to suspend (!sus) or re-
sume (!res) production ofM1, provided that the switch has been unlocked (unlock) by
the system. Type II workpieces are first processed byM2, passed throughH3 andB3,
further processed byM1, passed throughH2 andB2, and finally processed byM2. The
handlers and buffers are modelled as in Fig. 1, and Fig. 3 shows the rest of the automata
model of the system. AutomataW1 andProduceuse the blocking states⊥ to model
requirements for the synthesised supervisor to prevent output fromM1 in suspend mode
and to produce exactly two Type I workpieces.

9

HB1 0

1 2

3 4

5

⊥

fetch1

fetch1

fetch1

get1

get1

get1

get1

τu

τu

τu

W
0

1

2

3

4

5

6

7

8

9

10

11

⊥1 ⊥2 ⊥3

!output1

!output1

!output1

!output1

!output1

!output1

!output1

!output1

!output1

!output1

!output1

!output1

τuτu τuτu τuτu

τuτu τu τc

τc τc

τc τc

τc

Fig. 4.Automata encountered during compositional synthesis of manufacturingsystem example.

In the following, compositional synthesis is used to synthesise a supervisor subject
to these requirements. Initially, the system is

G = M1‖M2‖Lock‖Produce‖H1‖B1‖ · · · ‖H4‖B4 . (8)

In the first step,H1 andB1 are composed, so that event !put1 becomes an uncontrol-
lable local event and can be hidden. Thus,H1 andB1 are replaced byHB1 = (H1‖B1)\!
{!put1} shown in Fig. 4, where for graphical simplicity the two blocking states from
Fig. 1 are replaced by the state⊥. Clearly, such blocking states must be avoided, and
since the silent uncontrollable transition 5

τu→⊥ cannot be disabled by the supervisor or
by any plant, state 5 must also be avoided. States 5 and⊥ arecertainly unsupervisable
statesand are crossed out in Fig. 4. AutomatonHB1 is replaced by the synthesis equiv-
alent abstraction ˜HB1 with 5 states, which is obtained by deleting states 5 and⊥. The
same abstraction is applied to the other buffers and handlers.

After composition ofW1, Produce, andLock, events !sus, !res, !lock, andunlock
are local and can be hidden. Fig. 4 shows the resultW = (W1 ‖Produce‖ Lock) \!
{!sus, !res, !lock,unlock}. Clearly, states⊥1 and⊥2 are blocking states. Moreover, the

only way for state 1 to reach an accepting state is via the transition 1
!output1−−−−−→ 5. How-

ever, 1
τu→ 2

!output1−−−−−→ ⊥1, and since neither the supervisor nor any other plant can dis-
ableτu, a supervisor that enables event !output1 in state 1, inevitably permits the block-
ing state⊥1. State 1 is a certainly unsupervisable state, and similar arguments hold for
states 2, 3, 5, 6, and 7. Deleting these states fromW results in the synthesis equivalent
automatonW̃. Next, M1 andW̃ are composed, which results in !output1 becoming a
local event. The composed automaton,MW, has 28 states. Applying certain unsupervis-
ability results inM̃W with 20 states. ReplacingW1, Produce, andLock by M̃W gives
the final abstracted system̃G = M̃W‖M2‖ ˜HB1‖ ˜HB2‖ ˜HB3‖ ˜HB4.

Finally, the components of̃G are composed to calculate a supervisor. This requires
the exploration of the synchronous compositionG̃ with 48400 states, in contrast to
the state space of the original systemG with 1.3× 106 states. The final supervisors
calculated fromG andG̃ are identical and have 4374 states.

10

4 Certain Unsupervisability

4.1 Certainly Unsupervisable States and Transitions

The above example shows that some states of an automatonG must be avoided by
synthesis in every possible context. That is, no matter whatother automata are later
composed withG, it is clear that these states are unsafe. Blocking states are examples
of such states, but there are more states with this property.

Definition 10. Let G= 〈Σ,Q,→,Q◦,Qω〉 be an automaton. Thecertainly unsupervis-
able state setof G is

Û(G) = {x∈Q | for every automatonT = 〈Σ,QT ,→T ,Q◦T ,Qω
T 〉 and every

statexT ∈QT it holds that(x,xT) /∈ Θ̂G‖T } .
(9)

A statex of G is certainly unsupervisable, if there exists no other automaton T
such that the statex is present in the least restrictive synthesis resultΘ̂G‖T . If a state is
certainly unsupervisable, it is known that this state will be removed by any synthesis. If
such states are encountered in an automaton during compositional synthesis, they can
be removed before composing this automaton further.

Example 3. Consider again automatonHB1 in Fig. 4. Clearly, the blocking state⊥
is certainly unsupervisable. In addition, state 5 is also certainly unsupervisable, be-
cause of the local uncontrollable transition 5

τu→⊥. As this transition is silent, no other
component disables it, and as it is uncontrollable, the supervisor cannot disable it.
Therefore, if the automaton ever enters state 5, blocking isunavoidable. It holds that
Û(HB1) = {5,⊥}.

In addition to states, it is worth considering transitions as certainly unsupervisable.
If an uncontrollable eventυ can take a statex to a certainly unsupervisable state, then
all υ-transitions fromx are certainly unsupervisable. Such transitions can be removed
because it is clear that no supervisor will allow statex to be entered whileυ is possible
in the plant.

Definition 11. Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. A transitionx
υ→ y with

υ ∈ Σu is acertainly unsupervisable transitionif x
τ∗uυ−−→ Û(G).

Example 4. Consider automatonW in Fig. 4. States⊥1, ⊥2, and⊥3 are blocking and
therefore certainly unsupervisable. State 5 is also certainly unsupervisable, because

every path from state 5 to an accepting state must take the transition 5
!output1−−−−−→ 9.

However, this transition is certainly unsupervisable, as !output1 is uncontrollable and

5
τu→ 6

!output1−−−−−→⊥2 ∈ Û(W). The only way for a potential supervisor to avoid the block-
ing state⊥2 is to also avoid state 5. By similar arguments, it follows that Û(W) =
{1,2,3,5,6,7,⊥1,⊥2,⊥3}.

If the certainly unsupervisable states and transitions areknown, they can be used to
simplify an automaton to form a synthesis equivalentabstraction.

11

Definition 12. Let G= 〈Σ,Q,→,Q◦,Qω〉 be an automaton. The result ofunsupervis-
ability removalfrom G is the automaton

unsupC(G) = 〈Σ,Q,→unsup,Q
◦ \Û(G),Qω \Û(G)〉 , (10)

where

→unsup= {(x,σ ,y) ∈→ | σ ∈ Σc andx,y /∈ Û(G)}∪ (11)

{(x,υ ,y) ∈→ | υ ∈ Σu, x /∈ Û(G), andy∈ Û(G)}∪ (12)

{(x,υ ,y) ∈→ | υ ∈ Σu, x /∈ Û(G), andx
τ∗uυ−−→ Û(G) does not hold} . (13)

All controllable transitions to unsupervisable states areremoved (11), as these tran-
sitions can always be disabled by the supervisor and therefore never appear in the final
synthesis result. Uncontrollable transitions to certainly unsupervisable states, however,
are retained (12), because they are needed to inform future synthesis step. If another
component disables these events, they may disappear in synchronous composition with
that component, otherwise the source state may have to be removed in synthesis. Uncon-
trollable transitions to other states are deleted if they are certainly unsupervisable (13).

Example 5. When applied to automatonW in Fig. 4, unsupervisability removal deletes
all transitions linked to the crossed out states. While state⊥3 is also certainly unsuper-
visable, the shared uncontrollable !output1-transitions to this state are retained. They
are needed in the following steps of compositional synthesis. If some other component
disables !output1 while in state 10 or 11, then these states may be retained, otherwise
they will be removed at a later stage.

The following theorem confirms that unsupervisability removal results in a synthe-
sis equivalent automaton. Therefore, the abstraction can be used to replace an automa-
ton during compositional synthesis without affecting the final synthesis result.

Theorem 3. Let G be an automaton. ThenG≃synthunsupC(G).

Unsupervisability removal by definition only removes transitions and no states. Yet,
states may become unreachable as a result of transition removal, and unreachable states
can always be removed. Furthermore, it is possible to combine all remaining unsuper-
visable states, which have no outgoing transitions, into a single state [16].

4.2 Iterative Characterisation

The following definition provides an alternative characterisation of the certainly unsu-
pervisable states through an iteration. It forms the basis for an algorithm to compute the
set of certainly unsupervisable states.

12

Definition 13. Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. Define the setU(G) in-
ductively as follows.

U0(G) = /0 ; (14)

Uk+1(G) = {x∈Q | for all pathsx= x0
σ1→·· · σn→ xn∈Qω there existsi = 0, . . . ,n

such thatxi
τ∗u→Uk(G) or i > 0 andσi ∈ Σu andxi−1

τ∗uσiτ∗u−−−−→Uk(G) } ;

(15)

U(G) =
⋃

k≥0

Uk(G) . (16)

The setUk(G) contains unsupervisable states oflevel k. There are no unsupervis-
able states of level 0, and the unsupervisable states of level 1 are the blocking states,
i.e., those states from where it is not possible to ever reachan accepting state. Unsu-
pervisable states at a higher level are states from where every path to an accepting state
is known to pass through an unsupervisable state or an unsupervisable transition of a
lower level.

Example 6. Consider automatonW in Fig. 4. It holds thatU0(W) = /0, andU1(W) =
{⊥1,⊥2,⊥3} contains the three blocking states. Next, it can be seen that1∈U2(W),

because every path from 1 to an accepting state includes the transition 1
!output1−−−−−→ 5 with

!output1 ∈ Σu and 1
τu→ 2

!output1−−−−−→ ⊥1 ∈ U1(W). Likewise, it holds that 2,3,5,6,7 ∈
U2(W). No further states are contained inU2(W) or inUk(W) for k> 2, so thatU(W)=
U2(W) = {1,2,3,5,6,7,⊥1,⊥2,⊥3}= Û(W).

The following Theorem 4 confirms that the iterationUk(G) reaches the set of cer-
tainly unsupervisable states.

Theorem 4. Let G= 〈Σ,Q,→,Q◦,Qω〉 be an automaton. ThenU(G) = Û(G).

4.3 Algorithm

To determine whether some statex is contained in the setUk+1(G) of unsupervisable
states of a new level, the definition (15) considers all pathsfrom statex to an accepting
state. Such a condition is difficult to implement directly. It is more feasible to search
backwards from the accepting states using the following secondary iteration.

Definition 14. Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. Define the sets ofsuper-
visable states Sk(G) for k≥ 1 inductively as follows.

Sk+1
0 (G) = {x∈Qω | x τ∗u→Uk(G) does not hold} ; (17)

Sk+1
j+1(G) = {x ∈ Q | x

σ→ Sk+1
j (G), andx

τ∗u→ Uk(G) does not hold, and if

σ ∈ Σu thenx
τ∗uστ∗u−−−→Uk(G) does not hold} ;

(18)

Sk+1(G) =
⋃

j≥0

Sk+1
j (G) . (19)

13

Given the setUk(G) of unsupervisable states at levelk, the iterationSk+1
j (G) com-

putes a set of supervisable states, i.e., states from where asupervisor can reach an
accepting state while avoiding the unsupervisable states inUk(G). The process starts as
a backwards search from those accepting states from where itis not possible to reach a
known unsupervisable state using onlyτu-transitions (17). Then transitions leading to
the states already found are explored backwards (18). However, source statesx that can

reach a known unsupervisable state using onlyτu-transitions (x
τ∗u→Uk(G)), and known

unsupervisable transitions (x
τ∗uστ∗u−−−→Uk(G)) are excluded.

Example 7. As shown in Example 6, the first iteration for unsupervisablestates of
automatonW in Fig. 4 gives the blocking states,U1(W) = {⊥1,⊥2,⊥3}. Then the first
set of supervisable states for the next level contains the two accepting states,S2

0(W) =

{8,9} according to (17). Then 4
!output1−−−−−→ 8∈ S2

0(W) and 8
τu→ 9∈ S2

0(W) and 10
τu→ 9∈

S2
0(W), and it does not hold that 4

τ∗u→U1(W) or 4
τ∗u !output1τ∗u−−−−−−−→U1(W) or 8

τ∗u→U1(W)

or 10
τ∗u→U1(W). Therefore,S2

1(W) = {4,8,10} according to (18). Note that 5/∈ S2
1(W)

because despite the transition 5
!output1−−−−−→ 9 it holds that 5

τu→ 6
!output1−−−−−→ ⊥2 ∈ U1(W).

The next iteration givesS2
2(W) = {0,4,9,11}, and following iterations do not add any

further states. The result isS2(W) = {0,4,8,9,10,11}= Q\U2(W).

The following theorem confirms that the iterationSk+1
j (G) converges against the

complement of the next level of unsupervisable states,Uk+1(G).

Theorem 5. Let G = 〈Σ,Q,→,Q◦,Qω〉 be an automaton. For allk ≥ 1 it holds that
Sk(G) = Q\Uk(G).

Algorithm 1 is an implementation of the iterations in Def. 13and 14 to compute the
set of certainly unsupervisable states for a given automaton G. First, the sets of certainly
unsupervisable statesU and certainly unsupervisable transitionsUT are initialised in
lines 2 and 3. Then the loop in lines 4–28 performs the iterations forUk(G).

The first step is to compute the supervisable statesSk+1(G), which are stored inS.
In line 5, this variable is initialised to the setSk+1

0 (G) containing the accepting states
that are not yet known to be unsupervisable. Then the loop in lines 7–15 uses astackto
perform a backwards search over the transition relation, avoiding known unsupervisable
source states and known unsupervisable transitions. Upon termination, the variableS
contains the setSk+1(G) of supervisable state for the next level.

Then the loop in lines 17–27 updates the setsU andUT. For every state that was not
added toS, it explores the predecessor states reachable by sequencesof τu-transitions,
and adds any states found toU, if not yet included. By adding theτu-predecessors to the
setU immediately, the reachability tests in (17) and (18) can be replaced by the direct
membership tests in line 10. Next, for any new unsupervisable statex, the loop in lines
21–25, searches for possible uncontrollable transitions followed by sequences ofτu and
adds such combinations of source states and uncontrollableevents to the set certainly
unsupervisable transitionsUT.

The algorithm terminates if no new unsupervisable states are found during execution
of the loop in lines 17–27, in which case the flagdoneretains its true value. At this point,
the setU contains all certainly unsupervisable states.

14

Algorithm 1 CalculateU(G)

1: input G= 〈Σ,Q,→,Q◦,Qω 〉
2: U ← /0
3: UT← /0
4: repeat
5: S←{x∈Qω | x /∈U }
6: stack.init(S)
7: while stacknot emptydo
8: x← stack.pop()

9: for all w
σ→ x do

10: if w /∈ Sandw /∈U and(w,σ) /∈ UT then
11: S← S∪{w}
12: stack.push(w)
13: end if
14: end for
15: end while
16: done← true

17: for all x
τ∗u→Q\Sdo

18: if x /∈U then
19: U ←U ∪{x}
20: done← false
21: for all υ ∈ Σu \{τu} do

22: for all w
τ∗u υ−−→ x do

23: UT← UT∪{(w,υ)}
24: end for
25: end for
26: end if
27: end for
28: until done
29: return U

4.4 Complexity

This section gives an estimate for the time complexity of Algorithm 1. Each iteration
of the main loop in lines 4–28 must add at least one state toU, which gives at most|Q|
iterations. During each of these iterations, the loop in lines 7–15 visits each transition at
most once, giving up to|→| iterations, and the loop in lines 17–27 visits up to|Q| pre-
decessors of each state, which gives another|Q|2 iterations. Assuming that the closure
of τu-transitions is calculated in advance, these iterations can be executed without over-
head. The inner loop in lines 21–25 has another|Q|2 iterations, again assuming that the
closure ofτu-transitions is calculated in advance. However, the inner loop not executed
more than once per state during the entire algorithm. The complexity to compute the
τu-closure in advance isO(|Q|3) [18].

Summing up these computation costs, the worst-case time complexity of Algo-
rithm 1 is found to be:

O(|Q| · (|→|+ |Q|2)+ |Q| · |Q|2+ |Q|3) = O(|Σ||Q|3) . (20)

15

Thus, the set of certainly unsupervisable states can be computed in polynomial time.
This is surprising given the nondeterministic nature of similar problems, which require
subset construction[12]. For example, theset of certain conflicts[14], which is the
equivalent of the set of certainly unsupervisable states innonblocking verification, can
only be computed in exponential time. In synthesis, the assumption of a supervisor with
the capability of full observation of the plant makes it possible to distinguish states and
avoid subset construction.

4.5 Halfway Synthesis

This section introduceshalfway synthesis[9], which has been used previously [9, 16]
to remove unsupervisable states in compositional synthesis, and compares it with the
set of certainly unsupervisable states. It is shown that in general more states can be
removed by taking certain unsupervisability into account.

Definition 15. Let G= 〈Σ,Q,→,Q◦,Qω〉, and letΘ̂G,τu be the greatest fixpoint of the
synthesis step operator according to Def. 8, but computed under the assumption that
Σu = {τu}. Thehalfway synthesis resultfor G is hsupC(G) = 〈Σ,Q,→hsup,Q

◦∩ Θ̂G,τu,

Qω ∩ Θ̂G,τu〉, where

→hsup= {(x,σ ,y) ∈→ | x,y∈ Θ̂G,τu }∪ (21)

{(x,υ ,y) ∈→ | x∈ Θ̂G,τu, υ ∈ Σu\{τu}, andy /∈ Θ̂G,τu } (22)

The idea of halfway synthesis is to use standard synthesis, but treating only the
silent uncontrollable eventτu as uncontrollable. All other events are assumed to be con-
trollable, because other plant components may yet disable shared uncontrollable events,
so it is not guaranteed that these events cause controllability problems [9]. After com-
puting the synthesis fixpoint̂ΘG,τu, the abstraction is obtained by removing controllable
transitions to states not contained inΘ̂G,τu, while uncontrollable transitions are retained
for the same reasons as in Def. 12.

Theorem 6. Let G be an automaton. Then unsupC(G)⊆ hsupC(G).

Example 8. When applied to automatonH1 ‖B1 in Fig. 4, halfway synthesis removes
the crossed out states and produces the same result as unsupervisability removal. How-
ever, it only considers states⊥1,⊥2, and⊥3 of W in Fig. 4 as unsupervisable, because
the shared uncontrollable event !output1 is treated as a controllable event. This automa-
ton is left unchanged by halfway synthesis.

Halfway synthesis only removes those unsupervisable states that can reach a block-
ing state via local uncontrollableτu-transitions, but it does not take into account cer-
tainly unsupervisable transitions. Theorem 6 confirms thatunsupervisability removal
achieves all the simplification achieved by halfway synthesis, and Example 8 shows
that there are cases where unsupervisability removal can domore. On the other hand,
the complexity of halfway synthesis is the same as for standard synthesis,O(|Σ||Q|3),
which is the same as found above for certain unsupervisability (20).

16

5 Conclusions

The set ofcertainly unsupervisable statesof an automaton comprises all the states that
must be avoided during synthesis of a controllable and nonblocking supervisor, in every
possible context. In compositional synthesis, the removalof certainly unsupervisable
states gives rise to a better abstraction than the previously used halfway synthesis, while
maintaining the same cubic complexity.

The results of this paper are not intended to be used in isolation. In future work, the
authors will integrate the removal of certainly unsupervisable states with their composi-
tional synthesis framework [16]. It will be investigated inwhat order to apply unsuper-
visability removal and other abstraction methods, and how to group automata together
for best performance.

Certainly unsupervisable states are also of crucial importance to determine whether
two states of an automaton can be treated as equivalent for synthesis purposes. The
results of this paper can be extended to develop abstractionmethods that identify and
merge equivalent states in compositional synthesis.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. 9th ACM SIGSOFT Int. Symp.
on Foundations of Software Engineering 2001. pp. 109–120. Vienna,Austria (2001)

2. Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and timed sys-
tems. In: Hybrid Systems II, LNCS, vol. 999, pp. 1–20. Springer (1995)

3. Aziz, A., Singhal, V., Swamy, G.M., Brayton, R.K.: Minimizing interacting finite state ma-
chines: A compositional approach to language containment. In: Proc. Int. Conf. Computer
Design (1994)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press(2008)
5. Baier, C., Klein, J., Kl̈uppelholz, S.: A compositional framework for controller synthesis. In:

Katoen, J.P., K̈onig, B. (eds.) Proc. 22nd Int. Conf. Concurrency Theory, CONCUR 2011.
LNCS, vol. 6901, pp. 512–527. Springer, Aachen, Germany (Sep 2011)

6. Fabian, M.: On Object Oriented Nondeterministic Supervisory Control.Ph.D. thesis,
Chalmers University of Technology, Göteborg, Sweden (1995),https://publications.
lib.chalmers.se/cpl/record/index.xsql?pubid=1126

7. Filiot, E., Jin, N., Raskin, J.F.: Compositional algorithms for LTL synthesis. In: Chin, W.N.
(ed.) Proc. 8th Int. Symp. Automated Technology for Verification and Analysis, ATVA 2010.
LNCS, vol. 6252, pp. 112–127. Springer, Singapore, Singapore (Sep 2010)

8. Flordal, H., Malik, R.: Compositional verification in supervisory control. SIAM J. Control
and Optimization 48(3), 1914–1938 (2009)

9. Flordal, H., Malik, R., Fabian, M.,̊Akesson, K.: Compositional synthesis of maximally per-
missive supervisors using supervision equivalence. Discrete EventDyn. Syst. 17(4), 475–504
(2007)

10. Gohari, P., Wonham, W.M.: On the complexity of supervisory control design in the RW
framework. IEEE Trans. Syst., Man, Cybern. (Aug 2000)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
12. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to AutomataTheory, Languages, and

Computation. Addison-Wesley (2001)
13. Lin, F., Wonham, W.M.: Decentralized control and coordination ofdiscrete-event systems

with partial observation. IEEE Trans. Autom. Control 35(12), 1330–1337 (Dec 1990)

17

14. Malik, R.: The language of certain conflicts of a nondeterministic process. Working Paper
05/2010, Dept. of Computer Science, University of Waikato, Hamilton, New Zealand (2010)

15. Malik, R., Streader, D., Reeves, S.: Conflicts and fair testing. Int.J. Found. Comput. Sci.
17(4), 797–813 (2006)

16. Mohajerani, S., Malik, R., Fabian, M.: A framework for compositional synthesis of modular
nonblocking supervisors. IEEE Trans. Autom. Control (Jan 2014),to appear

17. Mooij, A.J., Stahl, C., Voorhoeve, M.: Relating fair testing and accordance for service re-
placeability. J. Logic and Algebraic Programming 79(3–5), 233–244 (Apr–Jul 2010)

18. Nuutila, E.: Efficient Transitive Closure Compuation in Large Digraphs, Acta Polytechnica
Scandinavica, Mathematics and Computing in Engineering Series, vol. 74.Finnish Academy
of Technology, Helsinki, Finland (1995)

19. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In:Proc. 16th ACM Symp.
Principles of Programming Languages. pp. 179–190 (1989)

20. Wonham, W.M.: On the control of discrete-event systems. In: Nijmeijer, H., Schumacher,
J.M. (eds.) Three Decades of Mathematical System Theory. LNCIS,vol. 135, pp. 542–562.
Springer (1989)

18

Wind Turbine System : An Industrial Case Study in
Formal Modeling and Verification

Jagadish Suryadevara1, Gaetana Sapienza2,
Cristina Seceleanu1, Tiberiu Seceleanu2, Stein-Erik Ellevseth2, and Paul Pettersson1

1 Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden.
{jagadish.suryadevara,cristina.seceleanu,paul.pettersson}@mdh.se

2 ABB Corporate Research.
{gaetana.sapienza,tiberiu.seceleanu}@se.abb.com,

stein-erik.ellevseth@no.abb.com

Abstract. In the development of embedded systems, the formal analysis of sys-
tem artifacts, such as structural and behavioral models, helps the system engi-
neers to understand the overall functional and timing behavior of the system. In
this case study paper, we present our experience in applying formal verification
and validation (V&V) techniques, we had earlier proposed, for an industrial wind
turbine system (WTS). We demonstrate the complementary benefits of formal
verification in the context of existing V&V practices largely based on simulation
and testing. We also discuss some modeling trade-offs and challenges we have
identified with the case-study, which are worth being emphasized. One issue is
related, for instance, to the expressiveness of the system artifacts, in view of the
known limitations of rigorous verification, e.g. model-checking, of industrial sys-
tems.

Keywords: Industrial Case-Study, Wind Turbine System, MARTE/CCSL,
EAST-ADL, Verification, Model Checking, UPPAAL

1 Introduction

The increasing complexity and criticality of real-time embedded systems (RTES), in
domains such as industrial automation, automotive and avionics, stresses the need for
applying systematic design phases, combined with rigorous verification and valida-
tion (V&V) techniques, during system development [3]. A well-defined design process
with necessary tool support leads to ensuring system predictability, w.r.t intended func-
tional and timing behavior. Nevertheless, meeting such a clear objective has several
challenges. One of pre-requisites is well-defined system artifacts representing system
structure as well as behavior with reactive, continuous, discrete, and real-time fea-
tures, or a combination thereof, at suitable levels-of-abstraction. For complex industrial
systems, the above design by-products, while necessary, may lead to additional issues
such as ensuring traceability, analyzability as well as reusability of the system artifacts.
In this context, model-based development approaches, which enable continuous V&V
throughout the development process, have become a feasible solution to tackle some of
the challenges. However, formal verification techniques such as model checking, while

19

useful for the exhaustive analysis of system behavior, are challenging to apply for com-
plex system models. A related issue is choosing a suitable level of granularity and ex-
pressiveness for system artifacts, given the well-known limitations of model-checking,
such as the state-space explosion problem. In this paper, we address some of these chal-
lenges in the context of applying modeling and formal verification techniques using a
wind turbine system case-study, a complex industrial RTES.

The Unified Modeling Language (UML) provides a modeling profile called
MARTE (Modeling and Analysis of Real-Time and Embedded systems) [7] to support
the performance and schedulability analysis of system models. MARTE also includes
CCSL – a time model and a clock constraint specification language [1] for specifying
logical and chronometric constraints for system models. On the other hand, EAST-ADL
[2], an emerging standard for automotive systems, provides an integrated model-based
development for RTES, through well-defined phases, as well as support for traceability.
Recently, EAST-ADL has been integrated with model-checking support for component-
based designs, e.g. the ViTAL tool [4] based on the timed automata technology for
verification [5,11,10].

In this paper, we target the verification of functionality and timing behavior of a
wind turbine system developed in the context of the iFEST (industrial Framework for
Embedded Systems Tools), an ARTEMISIA project. In Section 2.2, we overview a
simplified version of the wind turbine system (WTS), and describe its functionality and
timing behavior. Rest of the paper is organized as follows: In Section 3, we briefly recall
CCSL and timed automata. In Section 4, we describe a modeling methodology for the
WTS to enable verification using model checking. The analysis results of simulating,
as well as model checking the WTS model are presented in Section 5. In Section 6, we
discuss our experience with the case study with respect to the challenges and limitations
in applying formal techniques to complex industrial systems. We conclude the paper in
Section 7.

2 Windturbine System (WTS) : An overview

Wind energy sources are fast-growing and in line with the technological advancement.
Modern wind turbine systems require sophisticated and effective control functionalities
in order to fulfill performance, safety, and maintainability requirements. The main pur-
pose of a wind turbine system is to convert the rotational mechanical energy of the rotor
blades (i.e. mechanical components of a wind turbine) caused by the wind into electri-
cal energy to be redistributed via a power grid. Given the system’s complexity, the
iFEST (industrial Framework for Embedded Systems Tools) project3 aims at providing
a model-based approach for system development, to ensure the system predictability
w.r.t the specified functional and timing behavior.

2.1 Development Process and Environment

In the iFEST project, we have carried out the system development by adopting the V-
model based software development approach, as follows:

3 http://www.artemis-ifest.eu/

20

During Requirement and Analysis phase, we have documented the WTS require-
ments, both functional and extra-functional including timing behavior. For the Design
phase, we have combined component- and model-based approaches, keeping in view
the overall system analyzability and reusability requirements. During the Implementa-
tion phase, we have applied automatic code generation technologies.Subsequently, the
implemented system, a combined FPGA and CPU solution, has been deployed on a het-
erogenous hardware platform (XilinX ZynQ 7000 product family). For the Verification
and Validation (V&V), we have used model-based techniques as follows: (i) simula-
tion of the WTS functionality using Simulink and related toolboxes, and (ii) automatic
model-based test-case generation with MaTeLo tool. However, the above techniques
are not sufficient to ensure system predictability w.r.t to all possible system executions,
hence formal verification is desirable to complement the current analysis methods. To
address the above open issue, in this paper, we present a verification technique towards
enhanced system validation. And, our contributions are as below:

– As enhanced system validation, we apply verification technique to establish sys-
tem properties, (partially) based on simulation results of Simulink-based system
models.

– We are able to verify safety requirements that involve timing behavior (e.g. “the
wind turbine moves to Park mode, within 30s of detecting that the wind speed has
crossed the upper limit of 20m/sec”).

2.2 The Wind Turbine System Model

The wind turbine system is modeled as a closed-loop control system, as shown in Fig-
ure 1. The key components are the Plant and the Controller subsystems. The Controller
dynamically regulates the rotor blades of the wind turbine w.r.t the specified wind pro-
file, to maximize the generation of electrical energy and also to avoid damage to the
plant in case of turbulent wind scenarios. It automatically changes the Controller Out-
put signal to regulate the plant, based on the wind and the plant’s actual conditions,
which are received by the Controller via the Sensor Input signals. The Wind Profile
and the Resistive Load are used to simulate and test the behavior of the plant and the
controller, under specific wind and resistive load conditions. Further details of the plant
and controller subsystems are described below.

2.2.1 Plant model. As shown in Figure 2 (in Section 4), it consists of three main
components; Servo, Rotor, and Generator. The pitch of the turbine, determined by the
Controller (described below), is actuated by the Servo. The Rotor produces the required
torque to maximize the angular speed of the Generator (which produces the final volt-
age), based on the pitch value as well as the current wind speed (we assume a fixed
resistive load). The Rotor optimizes the produced torque value based on the current
angular speed of the Generator.

2.2.2 Controller model. As shown in Figure 3 (in Section 4), it consists of four
main components: the Filter, the Main Controller, the Pitch Controller, and the Park

21

Fig. 1. Wind Turbine System Model

and Brake Controller. The Filter Subsystem is responsible for transducing, filtering
and scaling the wind signal and plant signal (for instance the rotational speed of the
turbine), which are used by the Main Controller and the Pitch Controller. Based on the
inputs received through the Filter, the Main Controller directs the overall control. It
oversees the performance and operations of the turbine in order to maximize the energy
production and prevent any damage to the plant. Based on the wind and plant state, the
controller determines the operational mode (i.e. park, start-up, generating, or brake) of
the turbine. The Pitch Control calculates the proper pitch i.e. angle to steer the rotor
blades when the turbine starts up or generates power. The Pitch and Brake controller
determines if the turbine needs to brake or park, to ensure the safety of the wind turbine,
for instance, during wind turbulances.

3 Preliminaries

In this section, we present an overview of the preliminaries needed for modeling of
the wind turbine system. We have used EAST-ADL modeling framework for structural
modeling of the WTS. The timed causality behavior of the system is specified using
CCSL. To provide the verification using the UPPAAL, a model checking tool, we have
developed the timed automata based semantic models of the system, based on the cor-
responding EAST-ADL models and the CCSL specifications.

3.1 EAST-ADL

The modeling process in EAST-ADL framework, developed in the context of the EAST-
EEA project, is structured into different abstraction levels such as feature level, anal-
ysis level, design level etc. At both analysis and design levels, the system is described
by a FunctionalArchitecture that consists of a number of inter-connected FunctionPro-
totypes (instantiation of FunctionType components). FunctionProtoype components are
either event- or time-triggered. The execution semantics of the EAST-ADL components
is as follows; components interact through single buffer, rewritable, non-consumable
ports, and execute in read-execute-write phases in run-to-completion fashion. The de-
tailed timing behavior as well as timing constraints for an EAST-ADL model can be
specified using TADL2, the Timing Augmented Description Language (ver 2), cur-
rently being integrated with EAST-ADL framework [8]. In related works, we have pro-
posed verification techniques for TADL2-based EAST-ADL models [5,11,10].

22

3.2 CCSL

CCSL is used to specify the constraints imposed on the logical clocks (activation con-
ditions) of a model. A CCSL clock is defined as a sequence of instants (event occur-
rences). CCSL constraints are of three kinds: (i) Synchronous constraints rely on the
notion of coincidence. For example, the constraint “a coincidesWith b”, denoted
by a = b, specifies that each instant of a coincides with the corresponding instant of
b. Another example of a synchronous constraint is “a isPeriodicOn b period
n” , which specifies the subclock a whose ‘ticks’ correspond to every nth ‘tick’ of
b. (ii) Asynchronous constraints are based on instant precedence; the constraint “a
isFasterThan b” (denoted by a 4 b) specifies that clock a is (non-strictly)
faster than clock b. (iii) Mixed constraints combine coincidence and precedence; the
constraint “c = a delayedFor n on b” specifies that c ‘ticks’ synchronously with
the nth ‘tick’ of b following a ‘tick’.

3.3 Timed Automata

A timed automaton is a tuple < L, l0, C,A,E, I >, where L is a set of locations,
l0 ∈ L is the initial location, C is the set of clocks, A is the set of actions, synchroniza-
tion actions and the internal τ -action, E ⊆ L× A× B(C)× 2C × L is a set of edges
between locations with an action, a guard, a set of clocks to be reset, and I : L→ B(C)
assigns clock invariants to locations. A location can be marked urgent (u) or commit-
ted (c) to indicate that the time is not allowed to progress in the specified location(s), the
latter being a stricter form indicating further that the next transition can only be taken
from the corresponding location(s) only. Also, synchronization between two automata
is modeled via channels (e.g., x! and x?) with rendezvous or broadcast semantics.

The UPPAAL model-checker extends the timed automata language with a number
of features such as global and local (bounded) integer variables, arithmetic operations,
arrays, and a C-like programming language. The tool consists of three parts: a graphical
editor for modeling timed automata, a simulator for trace generation, and a verifier for
the verification of a system modeled as a network of timed automata. A subset of CTL
(computation tree logic) is used as the input language for the verifier. For further details,
we refer to UPPAAL tutorial [6].

4 WTS: Formal Specification and Modeling

In this section, we present a formal specification and modeling approach for WTS,
an aposteriori modeling technique, that is, the specification and modeling artifacts are
based on existing design artifacts such as Simulink models, requirements documents
etc. However, we apply an abstraction strategy to obtain the corresponding real-time
semantic models that represent the system functionality as well as the timing behav-
ior. Further, the strategy attempts to preserve the models’ tractability to make the ex-
haustive verification feasible. The overall modeling strategy, based on design principles
such as separation-of-concerns and correctness-by-construction, captures the underly-
ing model-of-computation and the execution behavior of the WTS. Below, we outline
some generic views/assumptions on which we base our formal modeling:

23

– Plant models and Instantaneous executions. A Plant model represents phys-
ical devices such as sensors and actuators with the corresponding model-of-
computation based on reactivity and instantaneity.

– Controller models and Timed executions. Controllers contain software compo-
nents based on timed model-of-computation, with explicit timing aspects, such as
delay, execution time, end-to-end deadline etc, to be formally specified and mod-
eled.

– Time and event triggering. The activation or triggering of RTES components is
generally based on specific time or event4 occurrences. Plant components are event-
triggered (i.e. in response to occurrence of input data), whereas controller compo-
nents are time- or event-triggered, this primarily being a design-choice.

– Run-to-completion. RTES components execute in run-to-completion steps, that is,
in terms of read-execute-write cycles.

– Data and value semantics. Due to the associated models-of-computation, as de-
scribed above, a data entity at a given ‘instant’, in the Plant or Controller, may
correspond to two distinct value instants.

– Real-time features. The structural and behavioral models of RTES often fail to
model real-time features, such as urgency, priority, and synchrony (explained later)
w.r.t to the underlying execution model.

– Environment modeling. An environment is external to the system, representing
physical parameters such as temperature, pressure, wind speed etc. To support for-
mal verification, a modeling strategy based on non-determinism as well as the prop-
erties to be verified, is needed.

To obtain an expressive and verifiable semantic model of the WTS, we employ a
component-based modeling approach, based on real-time formalisms such as CCSL
and timed automata.The overall modeling approach is as follows:

– Data and event representations are made based on the structural models.
– The timed causality behavior of the system components, w.r.t the associated model-

of-computation, is formally specified using CCSL constraints.
– The functional behavior of the components is modeled using an abstract finite-state-

machine notation, and transformed into timed automata.
– The CCSL constraints are transformed into timed automata, and composed using

the notion of synchronization product (described later).

Finally, a real-time semantic model of the overall system is obtained as a network (i.e.,
a parallel composition) of timed automata described above.

Fig. 2. Structural modeling: a plant model for the WTS.

4 While time is also an ‘event’, we differentiate this in this paper explicitly.

24

In Figure 2, we present the structural model of plant and controller for the WTS
(based on the corresponding Simulink models), using the EAST-ADL modeling
framework (in MetaEdit+5). The main components of the plant, that is SERVO,
ROTOR, and GENERATOR are modeled as FunctionalDevice prototypes in
EAST-ADL. In Figure 3, we present the structural model of the Controller. It models
the three sub-controllers MainControl, PitchRegulation, and ParkBrake, modeled
as AnalysisFunctionTypes. For further details of the functionality of these
components, we refer to Section 2.2. We demonstrate the overall modeling approach
for WTS, using the ROTOR and the MainControl components, below. We will also
discuss some related modeling issues.

Fig. 3. Structural modeling: a controller model of the WTS.

4.1 Data and Events

As shown in Figure 2, the ROTOR prototype, denoted by RT, receives input pitch
(theta), turbine speed (omega), and wind speed (ws) and produces the correspond-
ing torque value as the output. Hence, we define the local variables thetal, omegal,
and wsl and the corresponding global variables wsg , omegag , thetag . The local vari-
ables are updated at the activation of the RT using the corresponding global values. This
is consistent with the data semantics discussed previously.

1 CCSLclock RT in ; / / r e a d (i n p u t) i n s t a n t s
CCSLclock RT out ; / / w r i t e (o u t p u t) i n s t a n t s

3 CCSLclock RT omega ; / / a c t i v a t i o n (t r i g g e r) i n s t a n t s

5 C C S L c o n s t r a i n t
RT omega = RT in ; / / RT omega coincidesWith RT in

7 RT in = RT out ; / / RT in coincidesWith RT out

Listing 1.1. CCSL specification of ROTOR component.

4.2 Specification of timed causality behavior

The timed causality behavior of real-time components, w.r.t the corresponding
model-of-computation, can be specified precisely using CCSL logical clocks and
CCSL constraints. We use CCSL (logical) clocks to represent events corresponding
to ‘read’, ‘execute’, and ‘write’ instants of a component. In Listing 1.1 and Listing
1.2, we present the CCSL specification of ROTOR (RT) and MainControl (MC)

5 www.metacase.com

25

Table 1. Timing attributes of Controller components.

Min Max
Component Period Execution Time Execution Time

(ms) (ms) (ms)

MainControl 100 10 15
PitchRegulation 50 35 45
ParkBrake 50 15 20
Filter – 20 25

prototypes, respectively. The constraints specify the timed causality behavior of the
components w.r.t to the corresponding model-of-computation. For instance, the CCSL
constraints for RT specify the reactivity and instantaneity behavior of RT execution
within the Plant model. On the other hand, the CCSL constraints for MC specify
the time-triggered behavior of the controller execution. The timing attributes of the
controller components are given in Table 1. The CCSL specifications provide a basis
for constructing real-time semantic models e.g. timed automata based models, as well
as observers to establish the system properties, as presented later in this section.

1 CCSLclock MC in / / r e a d (i n p u t) i n s t a n t s
CCSLclock MC out / / w r i t e (o u t p u t) i n s t a n t s

3

C C S L c o n s t r a i n t

5 MC in delayedFor 10 on SysClk 4 MC out / / Minimum e x e c u t i o n t i me

MC out 4 MC in delayedFor 15 on SysClk / / Maximum e x e c u t i o n t i me
7 MC in isPeriodicWith period 100 on SysClk / / Time t r i g g e r i n g

Listing 1.2. CCSL specification of MainControl component.

4.3 Modeling functional behavior of real-time components

In Figure 4, we present the behavior modeling for the MainControl protoype (based
on the corresponding Simulink model). The behavior is specified using a finite-state-
machine (FSM) notation. It represents the overall system behavior (stateful) in terms
of control states PARK, START, BRAKE, and GENERATE. The states represent the
operational modes of the WTS, based on the wind speed and the turbine speed; the
mode transitions corresponding to mode-change behavior are triggered by boolean
conditions (guards) g1, g2, .. etc. Further, we simply annotate the behavior model to
denote the execution semantics such as run-to-completion (R-T-C) and history (denoted
by the control node H). The functionality of other components in the WTS are stateless
computations, that is partial functions between input and corresponding output values,
for instance as represented by the writeTorque() function of the ROTOR.

4.4 Formal modeling of Plant components

In this subsection, we present formal modeling approach, based on CCSL, for the
plant components of the WTS. We had earlier proposed, in a previous work [10],

26

Park

Start

Brake

Generate[g1]
[g5]

[g3]

[g2] [g4]

[g6]

H

R-T-C

Fig. 4. Functional behavior of the MainControl component.

transformation of CCSL constraints into timed automata. The transformations can be
used to derive timed automata based models that represent the timed causality behavior
of the system. For instance, in Figure 5.(a) and 5.(b), we present the timed automata
semantics of CCSL constraints that specify the timed causality behavior of ROTOR
executions (see Listing 1.1), using events RT in and RT out representing component
activation and termination respectively. Note that an event e.g. RT in is modeled
using synchronization channels i.e. send/receive signals RT in! and RT out!. Also
note that the synchronous occurrence of event signals, e.g. GR out? and RT in! in
Figure 5.(a), is specified using committed locations. A committed location indicates
that the corresponding enabled transitions from the location are ‘forced’ before time
can progress. This facilitates precise modeling of overall timing behavior of the system.

(b) (c)(a)

Fig. 5. Timed automata modeling: (a) RT omega = RT in (b) RT in = RT out (c)
Computation RT.

The above automata can be composed, using the notion of synchronization product
(based on common labels or synchronization signals), as shown in Figure 6.(a). For
instance, locations B and C in the automata in Figure 5.(a) and Figure 5.(b) respectively,
are mapped to the location BC in Figure 6.(a), due to the synchronization of signals
RT in! and RT in?.

(a) (b)

Fig. 6. Timed automata model for (event-triggered) ROTOR.

It can be noted that the composed location ‘BD’ is not possible in the synchronized
product automaton, as the location is non-reachable due to the synchronization at
B and C, leading to location AD (i.e. location A, and D simultaneously in resp.
automata) in the synchronized product, instead. Further, as shown in Figure 6.(a), we

27

associate the transitions corresponding to component activation, with data updates and
the corresponding computation; the RT in event denotes input as well as execution
of the corresponding functionality, during a transition from location BC to location
AD. However, to make the overall automata model of the WTS system tractable
(time-wise), and hence formally verifiable, we need to relax the notion of instantaneity
for the automata models of the Plant components. This can be done by introducing
a minimum time delay for each component, if not specified already. This is done by
assigning a timing invariant, the delay of one time unit, for instance at location AD in
Fig.6.(b).

(a) (b) (c)

Fig. 7. Semantic modeling: (a) Periodic triggering (b) Min. exec. time (c) Max. exec. time

4.5 Formal modeling of Controller components

In this subsection, we describe the timed automata modeling of the Controller
components for the WTS. In Figure. 7, we present the timed automata semantics of
the CCSL constraints (Listing 1.2) that specify the time-triggered execution behavior
of the MainControl (MC) prototype. We have composed these automata, as shown
in Figure 8.(a), based on the notion of synchronization product (as described in the
previous subsection). This consists of following steps; we have composed the automata
in Figure 7.(b) and 7.(c), and then finally with the automaton in Figure 7.(a) (note the
invariant y ≤ 100 at every location in the product automaton).

(a) (b)

Fig. 8. Timed automata modeling of MainControl: (a) time-triggering (b) functional behavior.

As shown in Fig.8.(b), we have also transformed the behavior (functional) model
of the MainControl (Fig.4) component into corresponding timed automaton, following
the mapping techniques proposed previously [9]. We briefly outline the transformation
as follows; we have mapped the control states to automaton locations. Further, using
additional locations Init and Final and the history variable ‘h’, we have modeled the
execution semantics, that is, run-to-completion, and preserving the history. For model

28

readability, we have not shown the data updates for the transitions; also, the boolean
guards of the form ‘eij’ correspond to actual expression (¬gi && ¬gj). It can be
noted that all the locations of the transformed automaton are marked ’urgent’ indicat-
ing the behavior model does not consume time, which has been separately modeled
using the timed causality model discussed above. Finally, we ‘connect’ the transformed
behavior model of the MainControl prototype, as described above, with the automata
model of the corresponding timing behavior (Fig.8.(b)), using synchronization channel
‘execute’.

4.6 Modeling the WTS system

Following the modeling strategy presented in the previous subsections, we can obtain
the timed automata models for all the WTS components, and form a network (parallel
composition) of these automata to obtain a timed automata based semantic model for
the complete system. However, some issues exist as discussed below:

Modeling the Environment: The plant model described previously, models the com-
ponents such as sensors and actuators constituting an environment model for the WTS
controller. However, this is not sufficient to obtain a ‘closed’ model of the system that is
necessary to enable exhaustive verification of the WTS model. For instance, modeling
external parameters such as WindSpeed, while necessary, is not feasible using timed
automata. In view of this, as well as the hybrid nature of the plant components e.g. RO-
TOR, GENERATOR etc, we choose to integrate the simulation data of the correspond-
ing Simulink models, to construct the partial functions that represent the computations
of the components.

Modeling ‘observer’ automata: The formal specification of complex properties of the
system, while possible using CTL (the property specification formalism of UPPAAL),
may not be directly verifiable. Instead, these can be intuitively modeled as observer
automata, (parallel) composed with the main system model, and can be efficiently ver-
ified.

5 WTS Analysis

In this section, we present both simulation as well as the verification results for the
WTS, and their correlation in verifying functional and safety-critical properties w.r.t
the overall timing behavior of the system.

5.1 Simulation

The main purpose of simulating the WTS, using the MathWorks Simulink and
StateFlow6, is to analyze the system behavior under normal operating conditions, and
to validate the system (in particular the Controller) when the wind speed exceeds the

29

0 10 20 30 40 50 60 70 80
0

20
40

Wind Speed

m
/s

ec

0 10 20 30 40 50 60 70 80
-2
0
2

Rotor Torque

N
m

0 10 20 30 40 50 60 70 80
0

20
40

Rotor Speed
ra

d
/s

ec

0 10 20 30 40 50 60 70 80
-100

0
100

Servo Motor Angle

D
eg

0 10 20 30 40 50 60 70 80
-100

0
100

Pitch

D
eg

0 10 20 30 40 50 60 70 80
0
2
4

Turbine State

Time (sec)

S
ta

te

Fig. 9. Simulation Results

designed limit. The simulation results are presented in Figure 9.

The simulation time is step-wise incremented from 0 up to 80 sec., with a fixed
sample time equal to 1 msec. For the simulation, a specific wind speed profile has been
created. According to this, the system is simulated for normal operating limits, i.e., 5
- 20 m/sec up to 30 sec, then up to 30m/sec above 43 sec. The simulation results are
analyzed w.r.t the turbine control states representing the operational modes (i.e. 0:park,
1:start, 2:generate, 3:brake).

While the simulation provides rich data representing the computation and control
of the WTS w.r.t complex environment behavior, system properties however can not be
established without analyzing the data. In the next subsection, we present a verification
technique to ‘exhaustively’ analyze the simulation data, w.r.t the overall system timing
and causality behavior, towards establishing the system properties. Below, we describe
some verification results for the WTS system.

5.2 Verification

For WTS, a formal modeling of the corresponding plant and the environment param-
eters is not possible. Hence, we use simulation data and construct partial functions
(input to output values) that represent the computations of the plant components, for
instance ROTOR. Also, we use simulation values corresponding to the environment
parameters e.g. wind-profile of the WTS. In the next section, we will discuss some
aspects about the construction of the relevant partial functions.

Verification of functional properties: Verification of functional properties gives insight
into the overall system (architectural) design. For instance, in the WTS case, it is useful
to verify the following property: “if the wind speed is within the prescribed limits, the

6 http://www.mathworks.se/products/stateflow/

30

controller eventually moves to Generate mode”. The property can be formulated as
a liveness property or leads to property (denoted by , implemented as --> in
UPPAAL), as below.

(ws>=5 && ws<=20) --> state==2 (1)

Verification of safety-critical properties: One of the safety-critical requirements for the
WTS is to fulfill the following property: “the wind turbine moves to Parkmode, within
30s from detecting that the wind speed has crossed the upper limit of 20m/sec”. To
verify the property (w.r.t to simulation data), we construct an observer automata for the
property as shown in Fig.10, compose the observer with the system model, and verify
that the corresponding invariant, the Property (2), holds for the composed model. Note
that the urgent channel ‘U!’ forces the transition from location B to A without any
further delay, when the corresponding transition is enabled.

A� obs.B implies x <= 30 (2)

x=0

x=0 BA

U!state==3

ws>20

Fig. 10. An observer automata to verify the safety-property: A[] obs.B implies x<=30

Verifying reachability properties: We can verify reachability of specific control states
or computation. For instance, using the Property 3, a reachability property, we can
verify that the control state ‘Park’ (Figure 8.(b)) has been reached (at least once) during
the simulation of the WTS. While this may be easily validated using the simulation
trace, we can use similar properties to verify specific ‘error’ states e.g. by extending
the behavior model with special ‘locations’ that are reached if the corresponding ‘error’
is detected. The presence of these error locations in the simulation data can then be
‘exhaustively’ verified.

∃ <> MC.Park (3)

Verifying deadlock-freeness: Using the Property 4, we can verify that the system is
deadlock-free, w.r.t overall timed causality behavior of the WTS, as modeled by the
corresponding timed automata model. The property is an important validation of the
system, which can not be achieved using simulation only, as the corresponding Simulink
model does not represent the timing behavior of the system explicitly. Also, the prop-
erty, when satisfied, verifies the correctness (i.e. consistency) of the timing attributes
(Table 1) associated with the system (architectural) design.

A� (not deadlock) (4)

31

6 Discussion and Lessons-learned

In this paper, we have presented a formal modeling and verification approach for an
industrial system, namely a wind turbine system. The main goal of the work has been to
provide formal verification as a complementary analysis method to existing validation
techniques based primarily on simulation. We have successfully addressed the follow-
ing challenges:

– Abstract but expressive system models: Using real-time formalisms such as CCSL
and timed automata, we were able to construct intuitive system models amenable
for exhaustive verification (w.r.t to timing). With the separation of timing and
functional modeling, the technique is scalable to complex system models.

– Verification as complementary analysis to simulation: The verification is based on
‘exhaustively’ analyzing the simulation data w.r.t the timing behavior of the sys-
tem. While verification models are expressive in terms of system structure and
precise timing behavior, simulation models are suitable to specify plant and the
environment, e.g. ‘wind profile’ modeling in the case of WTS simulation. Thus, the
verification approach provides an enhanced simulation-based validation.

The formal modeling approach for the wind turbine system considers the cor-
responding simulation results to model a suitable abstraction of the plant model. It
facilitates constructing a formal model of the WTS, including the plant behavior. This
was primarily one of the obstacles in earlier efforts to achieve formal verification
of the system. Besides, the formal models were only possible due to expressiveness
of real-time semantic formalisms such as CCSL and modeling flexibility in timed
automata, as demonstrated in this paper. Further, we believe that the modeling approach
is scalable to large complex systems, due to parallel composition of semantic models
(timed automata) representing system components. For the verification results, we have
considered only the control properties of the system with respect to the overall timed
causality behavior. However, we can also consider the data values in the verification,
due to timed automata variables. Thus, we have combined the expressiveness of CCSL
with modeling capabilities of timed automata.

However, some limitations of our approach do exist. The exhaustiveness of the veri-
fication is limited to partial functions constructed using specific instance(s) of simula-
tion. Hence, the approach may be similar to testing-based analysis (albeit model-based).
Hence, we need strategies, e.g. choosing suitable simulation step and data profiles, to
generate simulation data w.r.t the system properties to be verified. Further, it may be
noted that the simulation-extended verification approach presented above may be suit-
able for data-intensive control systems (e.g. hybrid systems), such as the wind turbine
system case study presented in the paper. On the other hand, control-intensive systems
may be exhaustively modeled and verifiable using model-checking independent of sim-
ulation.

32

7 Conclusion

In this paper, we have presented a formal modeling and verification approach for an
industrial case-study, namely an example wind turbine system. The architectural and
behavioral modeling, partially based on the existing system artifacts such as Simulink-
models, additionally captures precise timing behavior of the system. The modeling ap-
proach, based on the real-time formalisms such as CCSL and timed automata, also
integrates simulation data to model plant and environment behavior. Based on this, the
proposed verification technique using model-checking, enhances the simulation-based
system validation. Besides verifying functional properties that validate correctness of
the system design, safety-critical properties w.r.t the overall system timing behavior
can also be verified. This is clearly an important analysis step forward within existing
validation approaches for industrial applications. Thus the paper addresses V&V chal-
lenges in the industrial context, by combining both simulation and verification tech-
niques, paving the way towards scalable application of model-checking for an enhanced
validation process. As future work, we intend to investigate requirement-driven strate-
gies to derive the simulation criteria for generating relevant partial functions. This leads
to enhanced validation process that can verify useful classes of system properties.

Acknowledgment

This work was partially funded by Swedish Research Council (project ARROWS),
Mälardalen University (Sweden), and ARTEMISIA project iFEST.

References

1. André, C., Mallet, F., de Simone, R.: Modeling Time(s). In: Models’07. LNCS, vol. 4735,
pp. 559–573. Springer (2007)

2. ATESST (Advancing Traffic Efficiency through Software Technology): East-ADL2 specifi-
cation (March 2008), http://www.atesst.org, 2008-03-20

3. Bouyssounouse, B., Sifakis, J.: Embedded Systems Design: The ARTIST Roadmap for Re-
search and Development (Lecture Notes in Computer Science). Springer-Verlag New York,
Inc., Secaucus, NJ, USA (2005)

4. Enoiu, E.P., Marinescu, R., Seceleanu, C., Pettersson, P.: Vital : A verification tool for east-
adl models using uppaal port. In: ICECCS’12 (July 2012)

5. Goknil, A., Suryadevara, J., Peraldi-Frati, M.A., Mallet, F.: Analysis Support for TADL2
Timing Constraints on EAST-ADL Models. In: ECSA 2013 : 7th European Conference on
Software Architecture. p. 10 pages. LNCS, Montpellier, France (Jul 2013)

6. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Int. Journal on Software Tools
for Technology Transfer 1(1–2), 134–152 (Oct 1997)

7. OMG: UML Profile for MARTE, v1.0. Object Management Group (November 2009),
formal/2009-11-02

8. Peraldi-Frati, M.A., Goknil, A., DeAntoni, J., Nordlander, J.: A Timing Model for Specifying
Multi Clock Automotive Systems: The Timing Augmented Description Language V2. In:
ICECCS 2012. pp. 230–239 (2012)

33

9. Slutej, D., Håkansson, J., Suryadevara, J., Seceleanu, C., Pettersson, P.: Analyzing a pattern-
based model of a real-time turntable system. In: Jens Happe, B.Z. (ed.) 6th Interna-
tional Workshop on Formal Engineering approaches to Software Components and Architec-
tures(FESCA), ETAPS’09, York, UK, March. pp. 161–178. Electronic Notes in Theoretical
Computer Science (ENTCS), Vol 253, Elsevier (September 2009)

10. Suryadevara, J., Seceleanu, C., Mallet, F., Pettersson, P.: Verifying MARTE/CCSL mode
behaviors using UPPAAL. In: 11th International Conference on Software Engineering and
Formal Methods (SEFM 2013) (September 2013)

11. Suryadevara, J.: Validating EAST-ADL timing constraints using UPPAAL. In: 39th Euromi-
cro Conference on Software Engineering and Advanced Applications SEAA 2013) (Septem-
ber 2013)

34

Precise Documentation and Validation of
Requirements

Chen-Wei Wang, Jonathan S. Ostroff, Simon Hudon

Department of Electronic Engineering & Computer Science, York University
{jackie, jonathan, simon}@cse.yorku.ca

Abstract. Precise documentation of requirements is important for de-
veloping and certifying mission critical software. We specify cyber-physical
systems via an Event-B-like machine which declares the monitored and
controlled variables and their initial condition. A machine event models
the joint action of the plant and the controller. Embedded in the event
action is a function table that specifies the input-output behaviour of the
controller, as monitored variables are periodically updated by the plant.
We extend the Event-B notation with queries and modules. The result-
ing machine provides us with a mathematical description of the overall
system behaviour, thus allowing us to validate the requirements by prov-
ing that (1) the input-output specification of the controller is complete,
disjoint and well-defined, and that (2) the machine satisfies system-wide
consistency invariants elicited from domain experts. A biomedical device
is used as a case study, and we mechanize proofs via a SMT solver.

Keywords: certification, requirements documentation and validation,
model contracts, well-definedness, tabular expressions

1 Introduction

The central task of system development is to design the system such that its
overall behaviour satisfies the requirements. But this assumes that the require-
ments are precise and complete, while problems in the requirements phase will
negatively impact the subsequent phases of design and implementation.

Requirements are often stated informally using natural languages, which tend
to be imprecise and incomplete. It is rather difficult to reliably check that English
narratives, or even semi-formal models such as use cases, address all scenarios
relevant to the task at hand. Nevertheless, precise documentation of requirements
is important for validating, verifying and certifying mission critical software in
medical, automotive, nuclear and avionic systems [13].

Industrial standards such as IEEE 7-4.3.2 (nuclear), ISO 26262 (automotive)
and DO-178C (avionics) recommend the use of formal methods. But formal
methods alone do not guarantee that requirements will be complete. Tabular
expressions [20] (a.k.a. function tables) describe computer controllers as math-
ematical functions relating system stimuli and responses. Tabular expressions
have been adopted in the nuclear domain to ensure that specifications are com-
plete and disjoint [11, 21, 22].

35

2 Chen-Wei Wang, Jonathan S. Ostroff, Simon Hudon

Outline. We provide a small example to illustrate the use of tabular expressions
(Section 1.1). The example is used to motivate our methods and contributions.
The overall behaviour of a system is composed of the behaviour of the environ-
ment (the plant) together with a computer controller. We model the system be-
haviour with an Event-B machine extended with modules and embedded tabular
expressions (Section 1.2). Our method produces documentation that is presented
modularly, and it can be used to determine the completeness, disjointness and
well-definedness (Section 2) of specifications for an important class of systems.
Mathematically precise documents of requirements are essential: domain experts
review them for correctness; programmers use them for design and coding; and
regulatory authorities are assured that the software will not exhibit unintended
behaviour. Our method also allows for the validation of requirements via proofs
of system invariants. We report on a case study (Section 3) using our methods for
precise documentation and validation of requirements. Section 3 shows not only
that our methods are applicable to software products, but also that our methods
can be applied to improve the completeness, disjointness and well-definedness of
industry standards. Section 4 presents related work and conclusions.

1.1 A Small Example Consider a computer controller embedded in a larger
environment as shown in the context diagram in Fig. 1(a). In [21], stimuli from
the plant (environment) are referred to as monitored variables and responses
referred to as controlled variables. A variable such as z (in Fig. 1(a)) represents
the current value of a monitored variable and z-1 refers to its value in the previous
state. The system behaviour is modelled as a finite state machine. At discrete
points in time, the system detects the current values of all monitored variables,
and it uses the current state (and, possibly, the past states) of the machine
to generate the current values of the controlled variables and the next state of
the machine. Fig. 1(b) provides an artificial example of a function table for our
small system. For example, if the current value of z is non-negative (z ≥ 0), then
output x is described by the before-after predicate x = sqrt(z)∗x-1 + y , i.e., the
predicate expresses how the current value of output x depends on the current
values of y and input z and the previous value of x .

Periodically, the plant generates a new value, say z ∈ R, which is monitored
by the controller. In response, the controller generates a new value for the con-
trolled variables x , y ∈ R based on the monitored variables and the past state.

(a) Context diagram

Plant

Controller zx, y

monitored
variables

controlled
variables

error

(b) Function table describing controller execution

x : R error : B y : R |
z ≥ 0 sqrt(z)∗x-1 + y false

y-1∗x-1 ≤ y−43.2 ≤ z < 0 no change true

assume: −43.2 ≤ z

Fig. 1: Specification of a small system using the method in [21]

36

Precise Documentation and Validation of Requirements 3

Of course, a real system will have many more monitored and controlled variables
than shown in Fig. 1(a).

The above system description is an idealized view of the system behaviour
that is suitable for a requirements document: outputs are generated instanta-
neously once inputs are received. In later refinements, accuracy and timing tol-
erances must be taken into account [23]. Also, we are dealing with systems where
we do not have a detailed model of the plant. Our knowledge of the plant is lim-
ited to monitored and controlled variables and constraints on these variables.

In most useful systems it will not be possible to describe the controller be-
haviour using a single function. Instead, the requirements will include a number
of interacting functions, which themselves are represented by function tables. As
stated in [11, 20–22], the function tables must be complete and disjoint as for-
malized in Fig. 3 (p4). Completeness ensures that all possible inputs are covered.
Disjointness ensures that there are no conflicts in the outputs.

1.2 Our Method and Contributions Fig. 2(a) describes an Event-B [2]
machine system with event execute that models the joint action of the plant
and the controller. The machine declares the monitored and controlled variables
as well as their initial condition. The plant periodically generates new values
for the monitored variable z (using the any construct to non-deterministically
assign a value to parameter r ∈ R). The function table describing the input-
output behaviour of the controller is embedded in the action of the event. The
Event-B notation is extended with queries and modules. The resulting machine
provides us with a mathematical description of the overall system behaviour,
thus allowing us to validate the requirements by proving system invariants.

Queries (with pre/post conditions) such as sqrt in Fig. 2(b) are not directly
supported by function tables (usually based on total functions) and Event-B. It
is convenient to allow the use of partial functions (specified with preconditions).
The precondition of a partial function captures in one place where the function
can be applied meaningfully, thus providing a logical firewall between the spec-
ifier and the client so that functions are not misused on meaningless inputs (see
the discussion on design-by-contract in [14]).

Our contributions are as follows:

(a) System

machine system use MATH
--machine using module MATH

variables
x , y , z : R
error : B

init x = 0∧ y = 0∧ z = 0
event

execute any r when −43.2 ≤ r
then z := r || « Table 1(b) » end

(b) Type MATH

type MATH
const ε : R
axiom 0 < ε ≤ 0.001
query sqrt(r : R) : R

require r ≥ 0
ensure
−ε ≤ r − Result2 ≤ ε
0 ≤ Result

Fig. 2: Description of system consisting of plant and controller

37

4 Chen-Wei Wang, Jonathan S. Ostroff, Simon Hudon

1. Description of system behaviour via function tables embedded in a ma-
chine. As described, the machine event execute in Fig. 2(a) provides a precise
description of the system behaviour involving the joint action of the plant and
the controller. The event action refers to a function table that can be shown as
complete and disjoint. This allows us to validate the requirements (see Item 4).

2. Queries and well-definedness. We provide a method for introducing queries
defined via pre/post conditions, such as sqrt in Fig. 2(b). Queries facilitate the
construction of complex expressions in events, invariants and function tables.
A query introduces the possibility of its result being undefined if it is used in
a context that does not satisfy its precondition. We thus develop a theory of
well-definedness to ensure that the expressions (in function tables, guards and
invariants) that involve queries are well-defined. See Section 2 for more details.

3. Decomposition into modules and types. We allow variables and associated
queries to be collected in modules. This is particularly useful when describing
complex systems. If a module does not declare variables, then we call it a type
(e.g. type MATH in Fig. 2(b)). Only a machine, e.g. system, may declare events.
Modules do not declare any events, but only related variables, queries and in-
variants. If module m2 uses module m1, then the queries and invariants of m2

may use the variables and queries of m1. In a large system, we partition the state
into modules so as to allow a separation of concerns. We may always flatten a
machine, as well as modules that it uses, into a single, larger machine.

4. Validation of requirements via proofs of invariants. To our knowledge,
the literature does not discuss the proof of invariants in systems specified by
function tables. These invariants may describe important system safety require-
ments. Using our calculus of well-definedness, we can prove these invariants in
the framework developed above. Suppose we would like to prove the invariant
J (v) where v is the state variables of the system. As in Event-B, the proof
obligation is J (v-1)∧Gexecute(v-1)∧BAexecute(v-1, v)⇒ J (v), where Gexecute is
the event guard and BAexecute is the before-after predicate of the event action
specified by the function table.

5. E/R descriptions. In the case study, we retain informal English descrip-
tions of system requirements (R-descriptions) and of relevant phenomena and
constraints on the environment (E-descriptions). Our queries and function ta-
bles can be traced back to these descriptions.

Output
Input conditions r |
C1(x) C11(x) R1(x , r)

C12(x) R2(x , r)

C3(x) R3(x , r)

assume: A

Given : P1 , C1(x)∧C11(x)

P2 , C1(x)∧C12(x)

P3 , C3(x)

Qi , Ri(x , r) for i ∈ 1 . . 3

(a) Meaning of Table : A ∧ (∀i ∈ 1 . . 3 • Pi ⇒Qi)
(b) Completeness : A ∧ (∃i ∈ 1 . . 3 • Pi)
(c) Disjointness : A ∧ (∀i , j ∈ 1 . . 3 | i 6= j • ¬(Pi ∧Pj))
(d) Well-definedness : D(A) ∧ (A ∧ (∀i ∈ 1 . . 3 • D(Pi)∧(Pi ⇒D(Qi)))

Fig. 3: Completeness, Disjointness and Well-definedness of tabular expressions

38

Precise Documentation and Validation of Requirements 5

As mentioned above in the first contribution, we embed the black-box func-
tion table describing the controller in event execute (see Fig. 2(a)). The domain
experts may advise that there is an environmental constraint (−42.3 ≤ z) on the
monitored variable z , which we document as an E-description. We can constrain
the system behaviour accordingly via a guard (−42.3 ≤ r) for event execute.
When analyzing the function table in Fig. 1(b) for completeness and disjoint-
ness, we may add an assume clause with the relevant constraint on z .

Event execute defines the system behaviour as follows. The action of the plant
is modelled with an any construct. The event generates an arbitrary value for
parameter r constrained only by its guard. Because of the assignment z := r ,
the event guard places constraint (−42.3 ≤ z) on the plant monitored variable z .
Instantaneously, the event updates the controlled variables x and y (modelling
the action of the controller) as specified by the function table in Fig. 1(b).

The domain experts might specify that given the controller specification, a
system safety property (0 ≤ x ∧ 0 ≤ y) holds in all states. We document
this requirement as an R-description and express it as an invariant J (x , y , z) ,
(0 ≤ x ∧ 0 ≤ y). The event guard is Gexecute , −43.2 ≤ z and the before-
after predicate is BAexecute , Gexecute ⇒ β, where β is the BA derived from
the table in Fig. 1(b): β , (z ≥ 0 ⇒ x = Sqrt(z)∗x−1 + y) ∧ (−43.2 ≤ z <

0 ⇒ x = x−1) ∧ (y−1∗x−1 ≤ y). The proof obligation is thus (0 ≤ x-1 ∧ 0 ≤
y-1)∧Gexecute ∧β ⇒ (0 ≤ x ∧ 0 ≤ y). In [18], we provide a calculational proof
and show how it can be discharged automatically using the Z3 SMT solver [4].
For further details and the Event-B notations used in this paper, refer to [18].

2 Well-definedness of Expressions involving Partial Functions

It is often useful to have queries whose values are not defined for all inputs. For
example, the sqrt query shown in Fig. 2(b) has no meaningful results for negative
numbers. This raises the question of what status to give to expressions like
sqrt(−1). In classical tabular expressions [19], all partial functions are totalized
by extending their ranges with a special value of undefinedness. This creates
various problems when using standard theorem provers, which assume that all
functions are total [18]. For example, in the Z3 SMT solver [4], the expression
1/x = 1/x is a theorem, even though the expression is not well-defined if x = 0.

Given an expression exp, our extended report [17] provides a recursive def-
inition of the predicate D(exp) which holds when exp is well-defined (based on
[10]). The well-definedness of a query application q(x) with the precondition
Cq(x) is defined as D(q(x)) , Cq(x). For example, D(1/x = 1/x) ≡ (x 6= 0).
As shown in [17], whenever we are asked to prove predicate βq holds, where βq
involves a query q , we need to discharge two proof obligations. First, we must
show that D(βq) holds (this is usually relatively simple). Second, we must show
that βq holds. Both proofs can be conducted using a standard theorem prover
that treats all functions as total. In our framework, D(x/0 = x/0) is not a the-
orem, and thus x/0 = x/0 cannot be proved. The D operator is used in Fig. 3
(p4) to ensure that a function table using queries is well-defined.

39

6 Chen-Wei Wang, Jonathan S. Ostroff, Simon Hudon

(a) Context diagram

Pulse Software

IEEE-181

Pulse

Standard

blood cuff
measuring

instruments

and filters

Patient

Plant

controlled
variables

monitored
variables

report,
error message,

warning message

swf

 (sampled waveform)

(b) Black-Box Behaviour

Pulse Software
swf e_msg

duration, durationp, durationn,
y10, y50, y90,
t10p, t50p, t90p,
t10n, t50n, t90n

report

w_msg

(c) A Single Positive Pulse (IEEE-181)

(d) Is this a single positive pulse?

80

100

120

140

160

180

200

220

240

0 5 10 15 20 25 30 35

y10

y50

y90

y10

y50

y90

Fig. 4: The Pulse Software: System Boundary, Inputs and Outputs

3 Case Study: A Biomedical Device

We report on our recent work with an industrial partner. They provided code
taken from the software for a biomedical device that monitors blood pressure
via a cuff. Fig. 4(a) identifies the boundary of the pulse software (controller)
and its operating environment (the plant). A reading from the device arrives as
a sampled pulse representing blood pressure over time. Given the input pulse,
the software is required to calculate parameters (see Fig. 4(c)) as defined by the
IEEE-181 Standard on Transitions, Pulses, and Related Waveforms [1].

The input pulse swf ∈ SEQ [R] is a sequence of real numbers, represent-
ing pressure levels (vertical y axis) versus time instants (horizontal x axis).
In Fig. 4(b), given a sampled pulse, the software is required to produce three
outputs: 1) a report listing parameters values that are well-defined; 2) an appro-
priate error message, if any; and 3) an appropriate warning message, if any. For
output 1), the software calculates pulse parameters (see queries inside the box
of Fig. 4(b)) such as pulse and transition durations as defined by IEEE-181. A
warning or an error is reported on parameters whose values are not well-defined.

40

Precise Documentation and Validation of Requirements 7

Pulse Abb.

pulse duration duration
10% level y10
50% level y50
90% level y90

Pos. Tran. Abb.

duration durationp
10% instant t10p
50% instant t50p
90% instant t90p

Neg. Tran. Abb.

transition duration durationn
10% instant t10n
50% instant t50n
90% instant t90n

Table 1: Abbreviations for Pulse and Transition Parameters

In the IEEE-181 standard, a single positive pulse (see Fig. 4(c)) is divided
into a positive-going transition (one whose terminating level s2 is more positive
than its originating level s1), and into a negative-going transition (one whose
terminating level is more negative than its originating level). The standard spec-
ifies that linear interpolation is used to obtain levels that occur in-between the
sampled time instants. For each input pulse swf , the software must calculate the
pulse duration, as well as the 10%, 50% and 90% levels. Moreover, for each (posi-
tive or negative) transition of the pulse, the software must calculate its duration,
as well as the 10%, 50% and 90% instants. Table 1 summarizes the abbreviations
that we adopt for these parameters.

Our industrial partner was faced with various questions about their developed
code. They wanted to know how to increase confidence that their code was
correct and at least satisfied the IEEE-181 standard. Pulses from ill patients
(e.g. Fig. 4(d)) show significant variance from the classical shape (Fig. 4(c)).
They found it difficult to write their code to deal with such variances, and to
flag that the signal does not really represent a legitimate pulse (in some cases
their code produced spurious results). They wanted to know how they could
argue to certifying agencies, e.g. the FDA, that their code is safe and fit for use.

The IEEE-181 standard itself is ambiguous, thus sometimes leading to spu-
rious calculations. For example, where there are multiple 10% and 90% instants,
the standard specifies that we take the 10% and 90% instants that are closest to
the 50% instant of the standard.1. However, for some pulses this would result in
an ordering t90p < t50p < t10p which gives a negative duration (t90p − t10p)
for the positive-going transition. The linear interpolation formula in the stan-
dard, besides being overly-complicated, does not include a description of its
limitations: it includes a division, whose denominator expression might be zero,
without specifying what to do in cases where it is.2 More ambiguities and limi-
tations both in our industrial partner’s code and in the IEEE-181 standard are
discussed in an extended report [17].

Our proposed methods help address the above issues. Precise documentation
of requirements that is complete, disjoint and well-defined rules out issues of
ambiguities and well-definedness (e.g. division by zero). For example, the lim-
itations of the interpolation formula in IEEE-181 could have been addressed

1 Section 5.3.3.2 of IEEE-181: “If there is more than one reference level instant, the
reference level closest to the 50% reference level instance (see 5.3.3.1) is used, unless
otherwise specified.” Obviously t90p − t10p < 0 represents an unusual waveform.
Nevertheless, the software must deal with all inputs, however unusual.

2 Equations 5 and 6 on page 20 of IEEE-181 provide the interpolation formulas.

41

8 Chen-Wei Wang, Jonathan S. Ostroff, Simon Hudon

using preconditions of queries. Our version of the interpolation formula is total
(see our abstract data type RFUN in Section 3.3). Given that the standard was
not always clear, we recorded what we thought are relevant assumptions as E-
descriptions (Section 3.1), which differentiate between valid and invalid signals,
thus helping to remove ambiguities. R-descriptions (Section 3.2) describe the
required calculation of parameters for valid pulses and the errors or warnings for
invalid pulses. The complete specification is less than two pages (Fig. 6, p11 in
Section 3.4 and Table 2, p12 in Section 3.5). Specifying and proving a system
invariant such as t90p < t50p < t10p effectively validates the consistency of the
requirements (see Section 3.7).

3.1 Atomic E-descriptions E-descriptions document environmental assump-
tions and constraints on monitored variables. An atomic description consists of
two parts: (1) the description number (e.g. ENV1) allowing for traceability in the
design, the code, and acceptance tests; and (2) an informal English statement.

ENV1
A valid pulse consists of at least 3 samples, has a unique maximum
and each transition has at least one 50% instant.

ENV2
The unique maximum partitions the waveform into a positive tran-
sition and a negative transition. The 10%, 50% and 90% levels are
the same for both the positive and negative transitions.

3.2 Atomic R-descriptions Having defined what a valid input pulse is
(ENV1), we now document the required system input-output behaviour by con-
sidering three cases (ok, warning and error) each as an atomic R-description:

REQ3

ok: If the input pulse is valid and the 10% levels of both transitions
exist then output all the following parameters: (a) For the waveform:
10%, 50% and 90% levels. (b) For each transition: 10%, 50% and 90%
instants. (c) For each transition: the transition duration (i.e. time
from the 10% instant to the 90% instant). (d) The pulse duration
(time from the 50% instant of the positive transition to the 50%
instant of the negative transition).

REQ4

Warning: If the input pulse is valid and at least one of the 10%
levels is missing, output all the parameters except for the missing
10% levels and instants (and associated transition duration) and
issue a warning.

REQ5
Error: If the input pulse is invalid then no parameters are calculated
and appropriate error messages are printed.

Furthermore, there may be multiple 50% instants, and IEEE-181 specifies
that the first one must be selected. This is appropriate for the positive transition
but not for the negative transition, in which case the last 50% seems more
appropriate (if the two transitions were meant to be treated symmetrically).
The 10% and 90% will then be defined accordingly.

42

Precise Documentation and Validation of Requirements 9

REQ6
When multiple 50% instants are present in the positive transition
(respectively, negative transition), the first (respectively, the last)
50% instant is selected.

REQ7 Output the 10% and 90% instants closest to the 50% instants

Finally, we document an important system inavariant about transitions:

REQ8
- For positive transition: t10p < t50p < t90p

- For negative transition: t90n < t50n < t10n

3.3 Type RFUN for Linear Interpolation As mentioned earlier, the linear
interpolation formulas in IEEE-181 are not well-defined for all inputs. We could
add a precondition to the formulas. However, we can do better. We can improve
the standard by making the formulas total. We provide a re-usable type RFUN
(Fig. 5) that can be used to transform the sampled input swf : SEQ [R] into a
total, real-valued function wf : RFUN (see module waveform in Fig. 6, p11) that
agrees with swf on its sampled domain, and interpolates elsewhere.

type RFUN , (
⋃

x , y : R | x ≤ y • [x , y]→ R)
query ubound , lbound (rf : RFUN) : R --upper and lower bounds of the domain

axiom (∀rf : RFUN • dom(rf) = [rf .lbound , rf .ubound])
queries

has(rf : RFUN ; x1, x2, y : R) : B , (∃x : dom(rf) | x1 ≤ x ≤ x2 • rf (x) = y)
--does y occur between x1 and x2?

first (rf : RFUN ; x1, x2, y : R) : R , (↓ x : R | x1 ≤ x ≤ x2 ∧ rf (x) = y • x)
--1st instant of level y in interval [x1,x2]

require rf .has(x1, x2, y)
seq2rfun(s : SEQ [R]) : RFUN --linear interpolation

ensure dom(Result) = [1, s.count]
∧ (∀ x : [1, s.count] • Result(x) = s(bxc)∗(bx + 1c − x) + s(dxe)∗(x − bxc))

Fig. 5: Abstract data type for real-valued functions RFUN

In Fig. 5, by writing RFUN , (
⋃

x , y : R | x ≤ y • [x , y]→ R), we introduce a
new data type RFUN that is synonymous with the set of total functions, each of
which has the real-valued closed interval [x , y] as its domain, and the set of real
numbers as its range. The new type RFUN supports a query seq2rfun that con-
verts from a finite sequence of real numbers (e.g. swf : SEQ [R]) to a continuous
function. A real-valued instant in the domain of seq2rfun(swf) is projected to a

43

10 Chen-Wei Wang, Jonathan S. Ostroff, Simon Hudon

value that is calculated using an improved version of linear interpolation3 that is
free from division-by-zero and avoids the need for case analysis. Given an RFUN
(e.g. transformed from a sampled pulse sequence) as the first argument, queries
first and last calculate, respectively, the first and last instants where a given
level y occurs within some given closed interval [x1, x2]. Symbols ↓ and ↑ are the
minimum and maximum operators, respectively, extended into quantifiers.

3.4 The Machine and its Modules Similar to Section 1.1, Fig. 6 (p11)
describes a machine system with an event execute that models the joint action
of the plant and the controller. The machine declares a monitored variable (i.e.,
swf) and three controlled variables (e.g. variable report : S 7→ R containing the
pulse and transition parameters, etc.).

The plant periodically generates a new value for the monitored variable swf ,
and the controlled variables, e.g. report , are updated instantaneously according
to the embedded function table (« Table 2 on page 12 ») describing the controller
behaviour. We organize queries used in the function table into modules as follows:

system pulse
pos_trans

neg_trans

waveform signal
RFUN

SEQ[R]

The two rounded boxes denote abstract data types SEQ [G]4 and RFUN . The
square box with a thick border denotes a machine and other square boxes denote
modules. Each arrow corresponds to a use clause in Fig. 6 (p11). We distribute
queries that calculate the pulse and transition parameters into modules that
system uses, e.g. duration in the pulse module, t10p in the pos trans module,
etc. In those modules we also declare queries that calculate the intermediate
results, e.g. ymax in the signal module. The result of each query is precisely
defined either by an equality expression (, . . .) or by a post-condition (an
ensure clause). A module or a machine has access to variables and queries of all
modules it directly or indirectly uses. Consequently, machine system has access
to the monitored variable swf declared in module signal , and its embedded
function table (i.e. Table 2) has access to querie t10p in module pos trans.

A query may only be used in a context where its precondition (the require
clause) holds; otherwise, its result is not well-defined. For example, queries ymax
and t50p are only well-defined when, respectively, s3 and t50p? hold. We also use
a require clause at the module level to specify constraint that is to be included
as part of the preconditions of all queries. For example, in the waveform module,
each query should include the constraint s3∧ um as part of its precondition.

3 See the post-condition of query seq2rfun. Given a real t and a natural number n,
bt + nc = btc + n. Thus bt + 1c = btc + 1. In the definition of seq2rfun(s)(t) the
coefficients always add up to one, i.e. (bt +1c− t)+(t−btc) = 1. This eliminates the
possibility of division by zero and avoids the case analysis in the IEEE-181 standard.
Both swf and seq2rfun(swf) agree on their projected levels from the integer domain
of swf , i.e. swf = NC seq2rfun(swf).

4 For the complete definition of type SEQ [G] , (
⋃

n : N • 1..n → G) that supports
the standard queries count , has, head , and tail , see our extended report [18].

44

Precise Documentation and Validation of Requirements 11

machine system use pulse
variables report , e msg , w msg : S
event

execute
any p ∈ SEQ [R] then swf := p || « Table 2 on page 12 » end

module pulse use pos trans, neg trans
queries

duration : R , t50n − t50p
--time between 50% instants of positive and negative transitions

require t50?

t50?: B , t50p?∧ t50n? --do both 50% instants exist?

t10?: B , t10p?∧ t10n? --do both 10% instants exist?

require t50p?∧ t50n?

error : B , ¬(s3∧ um ∧ t50?)

warning : B , ¬error ∧¬t10?

ok : B , s3∧ um ∧ t50?∧ t10?
invariant

complete(〈error ,warning , ok〉)∧ disjoint(〈error ,warning , ok〉)
ok ⇒ t10p?∧ t10n?∧ t50p?∧ t50n?∧ t90p?∧ t90n?∧ durationp?∧ durationn?
ok ⇒ (t10p < t50p < t90p)∧(t90n < t50n < t10p)

module pos trans use waveform
require t50p?
queries

t10p : R , wf .last(1, t50p, y10)
require t10p?

t90p : R , wf .first(t50p, tmax , y90)
require t90p?

durationp : R , t90p − t10p
require durationp?

t10p?: B , wf .has(1, t50p, y10)

t90p?: B , wf .has(t50p, tmax , y90)

durationp?: B , t10p?∧ t90p?
invariant

durationp?⇒ t10p < t50p < t90p

module neg trans use waveform
require t50n?
queries

t10n : R , wf .first(t50n,n, y10)
require t10n?

t90n : R , wf .last(tmax , t50n, y90)
require t90n?

durationn : R , (t90n − t10n)
require durationn?

t10n?: B , wf .has(t50n,n, y10)

t90n?: B , wf .has(tmax , t50n, y90)

durationn?: B , t10n?∧ t90n?
invariant

durationn?⇒ t90n < t50n < t10n

module signal use SEQ [R]
variable swf : SEQ [R]
queries

n : N , swf .count

s3: B , (n ≥ 3)
--at least 3 samples?

ymax : R , (↑ i |1 ≤ i ≤ n • swf (i))
--maximum level (s2 in IEEE-181)

require s3

ymin : R , (↓ i |1 ≤ i ≤ n • swf (i))
--minimum level (s1 in IEEE-181)

require s3
um : B
, (#i |1 ≤ i ≤ n • swf (i) = ymax) = 1
--is there a unique maximum?

require s3

module waveform use signal, RFUN
require s3∧ um
queries

y10: R , ymin + 0.1 ∗ amplitude

y50: R , ymin + 0.5 ∗ amplitude

y90: R , ymin + 0.9 ∗ amplitude

t50p : R , wf .first(1, tmax , y50)
require t50p?

t50n : R , wf .last(tmax ,n, y50)
require t50n?

wf : RFUN , seq2rfun(swf)

amplitude : R , ymax − ymin

t50p?: B , wf .has(1, tmax , y50)

t50n?: B , wf .has(tmax ,n, y50)
tmax : R --instant for ymax

ensure 1 ≤ Result ≤ n
∧wf (Result) = ymax

Fig. 6: System Specification: Machine, Modules, Variables, Queries, and Invari-
ants

45

12 Chen-Wei Wang, Jonathan S. Ostroff, Simon Hudon

This tables is used in the context of module system in Fig.6 on p11 .

conditions on input e msg : 0..3 w msg : 0..2 report : S 7→ R
s3 um t50? t10? 0 0 format C− S1 C− S2

¬t10? ¬t10p? 0 1 format C− S2

¬t10n? 0 2 format C− S1

¬t50? 1 0 ∅
¬um 2 0

¬s3 3 0

where S1 = {“t10p′′ 7→ t10p, “durationp′′ 7→ durationp}; similarly for S2 on neg. trans.

Table 2: Requirements (see Table 4 for conditions and Table 5 for messages)

p “duration”“y10”“y50”“y90”“t50p”“t90p”“t50n”“t90n”

format(p) duration y10 y50 y90 t50p t90p t50n t90n

Table 3: Formatting Pulse & Transition Parameters (“t10p” and “t10n” left out)

Ab. Meaning

s3 are there at least 3 samples?

um is there a unique maximum?

t50? do both t50% instants exist?

t10? do both t10% instants exist?

t10p? does t10p (positive transition in-
stant for level y10) exist?

t10n? does t10n (negative transition in-
stant for level y10) exist?

Table 4: Conditions

Error

0 no error
1 no 50% instant
2 no unique maximum level
3 input lacks 3 finite floats

Warning

0 no warning
1 No t10p instant, durationp
2 No t10n instant, durationn

Table 5: Errors/Warnings

3.5 Using Module Queries in Function Tables Function Table 2 specifies
the black-box relation between the outputs of the controller (the report of pulse
parameters, error and warning messages) and its input (the sampled pulse swf).
As Table 2 is embedded as part of the action of event execute in machine system
its specification is facilitated by queries declared in modules that system uses.
The table is complete, disjoint, and well-defined for any arbitrary pulse input.

The first row of Table 2 specifies the report for the ok condition of REQ3
where the input is a valid pulse and all the pulse parameters can be calcu-
lated and reported. There are no errors or warnings to be reported. In this
case report = ((format C− S1) C− S2), where both report and format are partial
functions of type S 7→ R and “C−” is the operator of function override. Function
format is defined in Table 3, and its domain equals to names of parameters whose
values are well-defined where there is no error (i.e. s3∧ um ∧ t50? holds). In the
first row, parameters t10p, durationp, t10n, and durationn are well-defined and
are thus added to the report. The two grey rows deal with the warning case of
REQ4. The remaining rows deal with the error case of REQ5.

The first invariant in module pulse (Fig. 6, p11) ensures that the boolean
conditions ok , warning , and error are complete and disjoint. The second invari-
ant ensures that where there are no errors or warnings, all the parameters are

46

Precise Documentation and Validation of Requirements 13

well-defined. The third invariant states the system safety property in REQ8 to
ensure the consistency of duration calculations.

3.6 Traceability The informal E-descriptions (Section 3.1) and R-descriptions
(Section 3.2) are formalized as module queries and invariants (Fig. 6, p11), and
entries in the tabular specification (Section 3.5). We discuss a number of exam-
ples. For more details, see our extended report [18].

E-descriptions. For ENV1, in the pulse module, we define a Boolean query ok
whose definition corresponds to what qualify as a valid input pulse. Furthermore,
the last two invariants in module pulse specify that if the input pulse is valid, then
all queries that calculate the pulse and transition parameters are well-defined
and the various instants appear in the right orders. For ENV2, in the waveform
module, we define real-valued queries y10, y50, and y90 whose definitions are
accessible by modules pos trans and neg trans.

R-descriptions. For REQ3, we declare queries t50p and t50n in module
waveform and all other parameters as queries in modules pos trans, neg trans,
and pulse. For REQ6, in the waveform module, query t50p (and t50n) is defined
to return the first (and the last) 50% instant. For REQ7, in the pos trans mod-
ule, query t10p calculates the last, and hence the closest, instant with 10% level
before the 50% instant t50p. Similarly, query t90p calculates the 90% instant
that is closest to t50p by selecting the first one. Symmetric calculations apply
to queries t10n and t90n in the neg trans module.

3.7 Validating Tabular Expressions via Proofs The process of decompos-
ing queries into modules revealed the need to introduce REQ8 (on p9) asserting
that where two 10% (or 90%) instants are equally close to t50, e.g. the first in-
stant occurs before t50 and the second occurs after t50, the appropriate instant
should be chosen on the basis that the 10%, 50% and 90% instants must be in dif-
ferent orders for positive and negative transitions. The atomic requirement REQ8
is declared as the invariant ok ⇒ (t10p < t50p < t90p)∧(t90n < t50n < t10n)
in the pulse module (Fig. 6 on p11).

Tabular expressions (e.g. Table 2) and atomic requirements (e.g. REQ8) play
different roles. The tabular expression ensures that the input-output black-box
relation is completely specified. However, it is not obvious from the tabular ex-
pression that REQ8 holds as a global safety property. The modular specification
in Fig. 6 (p11) is used to prove that REQ8 holds as a logical consequence of
Table 2. This demonstrates the consistency between the modular specification
and the atomic description REQ8, thus an important component of require-
ments validation. This proof follows from the invariants declared in the modules
pos trans and neg trans. For example, in the positive transition module we have
the invariant durationp?⇒ t10p < t50p < t90p. Part of the proof of the above
invariant declared in the pos trans module is presented in Fig. 7.
Remark. In the small system of Section 1.1, the new state depends on previous
states. In the pulse case study, the new state depends upon only new values of
the monitored and controlled variables. The invariant proof obligation thus can
be discharged using axioms defining the queries.

47

14 Chen-Wei Wang, Jonathan S. Ostroff, Simon Hudon

Prove: t50p?∧ durationp? ⇒ (t10p < t50p)
t10p < t50p

= 〈 def. of t10p in module positive in Fig. 6 (on p11) 〉
wf .last(1, t50p, y10) < t50p

= 〈 def. of RFUN.last 〉
(↑ t : R | 1 ≤ t ≤ t50p ∧wf (t) = y10 • t) < t50p

= 〈 < over ↑; trading 〉
(∀t : R | 1 ≤ t ∧ t ≤ t50p ∧ t50p ≤ t • wf (t) 6= y10)

⇐ 〈 drop first conjunct in range; anti-symmetry of ≤; one point rule 〉
wf (t50p) 6= y10

= 〈 wf (t50p) = y50; def. of t50p in waveform 〉
¬(y50 = y10)

= 〈 def. of y50 and y10 in waveform 〉
¬((ymin + 0.5 ∗ amplitude) = (ymin + 0.1 ∗ amplitude))

= 〈 arithmetic and amplitide 6= 0 〉
true

Fig. 7: Proving a property of module positive that also validates REQ8

3.8 Using a SMT Solver to Discharge Proof Obligations SMT solvers
such as Z3 [4] allow us to check the satisfiability of first-order predicates involving
real numbers. When proving the predicate P(x)⇒Q(x) as a theorem, we check
that there are no witnesses that satisfy the negation of the predicate, i.e. there
are no assignments to x that make P(x)∧¬Q(x) true. Z3 will answer unsat if
the negation of the predicate has no witnesses, meaning that P⇒Q is a theorem;
sat if a counterexample is found; or unknown if no conclusions can be reached.

Using the Z3 SMT solver, we mechanized and discharged the invariant proof
in Fig. 7 (p14) by checking the validity of each step. We represent steps in the
proof structure like Fig. 7 as S0,S1, . . . ,Sn . Each step formula Si is formed by
Fi Ri Fi+1, where i ≥ 0, Fi and Fi+1 are predicates, and Ri is either an implica-
tion or an equivalence. We check that all steps are valid and they hold together to
entail H ` P . For example, in Fig. 7, S0 is (t10p < t50p) ≡ (wf .last(1, t50p, y10) <
t50p), and the theorem we aim to prove is (t50p?∧ durationp?) ` (t10p < t50p).
The following proof tree structure is encoded in Z3:

S0 ∧S1 ∧ . . .∧Sn−1 ` P

H ,S0 ∧S1 ∧ . . .∧Sn−1 ` P
mon

H ` S0 H ` S1 . . . H ` Sn−1

H ` S0 ∧S1 ∧ . . .∧Sn−1

split

H ` P
cut

We use three deduction rules: CUT introduces and proves a new assumption,
MON(otonicity) drops some hypotheses, and SPLIT divides the proof of a con-
junction into the proofs of its constituents. The bottom sequent in the proof tree
is the target theorem. The leaves are sequents stating that the steps establish
the goal, and that the steps with their justifications are valid. We can ensure
that the goal and the steps are well-defined by checking the sufficient condition:
D(P)∧D(F0)∧D(F1)∧ . . .∧D(Fn). See [18] for the Z3 script for proof in Fig. 7.

48

Precise Documentation and Validation of Requirements 15

4 Conclusion and Related Work

In this paper we present a method for specifying an important class of sys-
tems. The overall behaviour of a system is composed of the behaviour of the
environment (the plant) together with a computer controller. The informal re-
quirements are given by E/R-descriptions. The E/R-descriptions are formalized
via an Event-B-like machine that contains: 1) a set of system invariants obtained
from the R-descriptions; and 2) a function table specifying the input-output be-
haviour of the controller. The function table uses queries organized in modules.
Embedding function tables in an event system, and using queries organized in
modules, allow our framework to describe the system behaviour in a way that
supports precise documentation and validation of requirements. The formal re-
quirements are validated by proving that (a) the invariants are preserved; and
(b) the controller specification is complete, disjoint, and well-defined, leveraging
its tabular structure. Once validated, the tabular specification serves as the basis
for further design and implementation of the controller.

Using our method, the formal requirements for the biomedical device in the
case study is less than two pages (Fig. 6 on p11 and Table 2 on p12). The IEEE-
181 standard can also be improved using our method of precise documentation.

Our method adopts well-established software engineering principles: the sep-
aration between the controller and its operating environment using context dia-
grams [9], the identification of monitored and controlled variables [8, 16, 6], and
the use of tabular expressions to capture black-box, input-output relations [20,
11]. The theorem prover PVS has been used to provide tool support for tabular
expressions [11, 22, 5]. In PVS, partial functions are converted into total functions
using predicate subtyping which generates type checking proof obligations.

Our calculus of well-definedness (Section 2 and [17]) extends Abrial’s work on
model queries [3] to the specification context of tabular expressions. Authors of
[12] also extend [3] to apply to equivalence rewriting. However, while our main
focus is on supporting (formal) human reasoning (possibly validated by auto-
mated tools), authors of [12] target more automated reasoning. More precisely,
authors of [12] create a new syntactic category, a (one-directional) rewrite rule,
in order to allow users to create theories and specify identities in the context
of those theories. This means that identities specified outside of such a theory
(e.g., in a machine invariant or a guard) is not amenable to the same treatment
as those of the rewrite rules. To combine rewrite rules with logical inference
rules, authors of [12] provide a meta-theoretical justification. On the other hand,
by basing our rewrite rules on a logical operator (i.e., the logical equivalence),
rewriting is just one of the available inference rules. While substantial progress
has been made in mechanizing proofs, there are still many challenges [7].

Since our focus is on documentation, rather than on breaking new ground on
the semantics, we have not gone beyond the set of properties that can be proved
in Event-B. For more expressive temporal properties, such as liveness, we may
apply our method within the UNITY framework [15].

49

16 Chen-Wei Wang, Jonathan S. Ostroff, Simon Hudon

References

1. IEEE standard for transitions, pulses, and related waveforms. IEEE Std 181-2011
(Revision of IEEE Std 181-2003), pages 1–71, 2011.

2. J.-R. Abrial. Modeling in Event-B. Cambridge University Press, 2010.
3. J.-R. Abrial and L. Mussat. On using conditional definitions in formal theories. In

ZB, LNCS 2272, pages 242 – 269, 2002.
4. L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS, LNCS

4963, pages 337–340, 2008.
5. C. Eles and M. Lawford. A tabular expression toolbox for matlab/simulink. In

NASA Formal Methods, volume LNCS 6617, pages 494–499, 2011.
6. C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave. A Reference Model for

Requirements and Specifications. IEEE Software, 17(3):37–43, 2000.
7. J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Müller, and M. Parkinson. Behavioral

interface specification languages. ACM Comput. Surv., 44(3):16:1–16:58, 2012.
8. M. Jackson. Software Requirements & Specifications: a lexicon of practice, princi-

ples and prejudices. Addison-Wesley, 1995.
9. M. Jackson. The operational principle and problem frames. In Reflections on the

Work of C. A. R. Hoare. Springer, 2010.
10. Y. Jin and D. L. Parnas. Defining the meaning of tabular mathematical expressions.

Science of Computer Programming, 75(11):980–1000, 2010.
11. M. Lawford, P. Froebel, and G. Moum. Application of tabular methods to the

specification and verification of a nuclear reactor shutdown system. Formal Methods
in System Design, 2004.

12. I. Maamria and M. Butler. Rewriting and well-definedness within a proof system.
EPTCS, 43:49–64, 2010.

13. T. S. E. Maibaum and A. Wassyng. A product-focused approach to software
certification. IEEE Computer, 41(2):91–93, 2008.

14. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.
15. J. Misra. A discipline of multiprogramming: programming theory for distributed

applications. Springer, 2001.
16. J. S. Ostroff and R. F. Paige. The Logic of Software Design. Proc. IEE - Software,

147(3):72–80, 2000. The Logic of Software Design.
17. J. S. Ostroff, C.-W. Wang, and S. Hudon. Precise documentation of requirements

and executable specifications. Tech Report CSE-2012-03, York University, 2012.
18. J. S. Ostroff, C.-W. Wang, and S. Hudon. Precise documentation and validation

of requirements. Tech Report CSE-2013-08, York University, 2013.
19. D. L. Parnas. Predicate logic for software engineering. IEEE Trans. Softw. Eng.,

19(9), 1993.
20. D. L. Parnas and J. Madey. Functional Documentation for Computer Systems.

Science of Computer Programming, 25:41–61, 1995.
21. A. Wassyng and M. Lawford. Lessons learned from a successful implementation of

formal methods in an industrial project. In FME, pages 133–153, 2003.
22. A. Wassyng and M. Lawford. Software tools for safety-critical software develop-

ment. STTT, 8(4-5):337–354, 2006.
23. A. Wassyng, M. Lawford, and X. Hu. Timing tolerances in safety-critical software.

In FM, pages 157–172, 2005.

50

Reflections on Verifying Software with Whiley

David J. Pearce and Lindsay Groves

Victoria University of Wellington
Wellington, New Zealand
{djp,lindsay}@ecs.vuw.ac.nz

Abstract. An ongoing challenge for computer science is the development of a
tool which automatically verifies that programs meet their specifications, and are
free from runtime errors such as divide-by-zero, array out-of-bounds and null
dereferences. Several impressive systems have been developed to this end, such as
ESC/Java and Spec#, which build on existing programming languages (e.g. Java,
C#). Unfortunately, such languages were not designed for this purpose and this
significantly hinders the development of practical verification tools for them. For
example, soundness of verification in these tools is compromised (e.g. arithmetic
overflow is ignored). We have developed a programming language specifically
designed for verification, called Whiley, and an accompanying verifying com-
piler. In this paper, we reflect on a number of challenges we have encountered in
developing a practical system.

1 Introduction

The idea of verifying that a program meets a given specification for all possible inputs
has been studied for a long time. Hoare’s Verifying Compiler Grand Challenge was an
attempt to spur new efforts in this area to develop practical tools [1]. A verifying com-
piler “uses automated mathematical and logical reasoning to check the correctness of
the programs that it compiles”. Hoare’s intention was that verifying compilers should fit
into the existing development tool chain, “to achieve any desired degree of confidence in
the structural soundness of the system and the total correctness of its more critical com-
ponents”. For example, commonly occurring errors could be automatically eliminated,
such as: division-by-zero, integer overflow, buffer overruns and null dereferences.

The first systems that could be reasonably considered as verifying compilers were
developed some time ago, and include that of King [2], Deutsch [3], the Gypsy Verifi-
cation Environment [4] and the Stanford Pascal Verifier [5]. Following on from these,
was the Extended Static Checker for Modula-3 [6]. Later, this became the Extended
Static Checker for Java (ESC/Java) — a widely acclaimed and influential work in this
area [7]. Building on this success was the Java Modeling Language (and its associ-
ated tooling) which provided a standard notation for specifying functions in Java [8, 9].
More recently, the Spec# language [10–12] was developed on top of C#, whilst Dafny
was developed from scratch to simplify verification [13, 14].

Continuing this line of work, we are developing a verifying compiler for the Whiley
programming language [15–18]. Whiley is an imperative language designed to sim-
plify verification and to be suitable for safety-critical systems. For example, Whiley
uses unbounded integer and rational arithmetic in place of e.g. IEEE 754 floating point

51

(which is notoriously difficult to reason about [19]). Likewise, pure (i.e. mathemat-
ical) functions are distinguished from those which may have side-effects. Our goal
is to develop a verifying compiler which can automatically establish a Whiley pro-
gram as: correct with respect to its declared specifications; and, free from runtime
error (e.g. divide-by-zero, array index-out-of-bounds, etc). More complex properties,
such as establishing termination, are not considered (although would be interesting fu-
ture work). Finally, the Whiley verifying compiler is released under an open source li-
cense (BSD), can be downloaded from http://whiley.org and forked at http:
//github.com/DavePearce/Whiley/. Note that development of the language
and compiler is ongoing and should be considered a work-in-progress.

Contribution. The seminal works by Floyd [20], Hoare [21], Dijkstra [22], and others
provide a foundation upon which to develop tools for verifying software. However, in
developing a verifying compiler for Whiley, we have encountered some gaps between
theory and practice. In this paper, we reflect on our experiences using Whiley to verify
programs and, in particular, highlight a number of challenges we encountered.

2 Language Overview

We begin by exploring the Whiley language and highlighting some of the choices made
in its design. For now, we stick to the basic issues of syntax, semantics and typing and, in
the following section, we will focus more specifically on using Whiley for verification.
Perhaps one of our most important goals was to make the system as accessible as possi-
ble. To that end, the language was designed to superficially resemble modern imperative
languages (e.g. Python), and this decision has significantly affected our choices.

Overview. Languages like Java and C# permit arbitrary side-effects within methods and
statements. This presents a challenge when such methods may be used within specifi-
cations. Systems like JML and Spec# require that methods used in specifications are
pure (i.e. side-effect free). An important challenge here is the process of checking that
a function is indeed pure. A significant body of research exists on checking functional
purity in object-oriented languages (e.g. [23, 24]). Much of this relies on interprocedu-
ral analysis, which is too costly for a verifying compiler. To address this, Whiley is a
hybrid object-oriented and functional language which divides into a functional core and
an imperative outer layer. Everything in the functional core can be modularly checked
as being side-effect free.

Value Semantics. The prevalence of pointers — or references — in modern program-
ming languages (e.g. Java, C++, C#) has been a major hindrance in the development of
verifying compilers. Indeed, Mycroft recently argued that (unrestricted) pointers should
be “considered harmful” in the same way that Dijkstra considered goto harmful [25]. To
address this, all compound structures in Whiley (e.g. lists, sets, and records) have value
semantics. This means they are passed and returned by-value (as in Pascal, MATLAB or
most functional languages). But, unlike functional languages (and like Pascal), values
of compound types can be updated in place. Whilst this latter point may seem unimpor-
tant, it serves a critical purpose: to give Whiley the appearance of a modern imperative

52

language when, in fact, the functional core of Whiley is pure. This goes towards our
goal of making the language as accessible as possible.

Value semantics implies that updates to a variable only affect that variable, and that
information can only flow out of a function through its return value. Consider:

int f([int] xs):
ys = xs
xs[0] = 1
...

Here, [int] represents a list of ints (i.e. a variable-length array). The semantics of
Whiley dictate that, having assigned xs to ys as above, the subsequent update to xs

does not affect ys. Arguments are also passed by value, hence xs is updated inside f()
and this does not affect f’s caller. That is, xs is not a reference to a list of int; rather,
it is a list of ints and assignments to it do not affect state visible outside of f().

Unbounded Arithmetic. Modern languages typically provide fixed-width numeric types,
such as 32bit twos-complement integers, or 64-bit IEEE 754 floating point numbers.
Such data types are notoriously difficult for an automated theorem prover to reason
about [19]. Systems like JML and Spec# assume (unsoundly) that numeric types do not
overflow or suffer from rounding. To address this, Whiley employs unbounded integers
and rationals in place of their fixed-width alternatives and, hence, does not suffer the
limitations of soundness discussed above.

Flow Typing & Unions. An unusual feature of Whiley is the use of a flow typing system
(see e.g. [26, 27, 18]) coupled with union types (see e.g. [28, 29]). This gives Whiley
the look-and-feel of a dynamically typed language (e.g. Python). For example, local
variables are never explicitly declared; rather, they are declared by assignment. To il-
lustrate, we consider null references. These have been a significant source of error in
languages like Java and C#. The issue is that, in such languages, one can treat nullable
references as though they are non-null references [30] (Hoare calls this his billion dollar
mistake [31]). Although many approaches have been proposed (e.g. [32–36]), Whiley’s
type system provides an elegant solution:

int|null indexOf(string str, char c):
...

[string] split(string str, char c):
idx = indexOf(str,c)
// idx has type null|int
if idx is int:

// idx now has type int
below = str[0..idx]
above = str[idx..]
return [below,above]

else:
// idx now has type null
return [str]

Here, indexOf() returns the first index of a character in the string, or null if there is
none. The type int|null is a union type, meaning it is either an int or null. After the

53

assignment “idx = indexOf(str,c)” variable idx has type int|null. The system
ensures null is never dereferenced because the type int|null cannot be treated as an
int. Instead, one must first check it is an int using e.g. “idx is int” (similar to
instanceof in Java). Furthermore, Whiley’s flow type system automatically retypes
variables through such conditionals. In the example above, the variable idx is automat-
ically retyped by “idx is int” to have type int on the true branch, and type null on
the false branch. This prevents the needs for explicit casts after a type test (as required
in e.g. Java).

As another example, we consider unions of the same kind (e.g. a union of record
types, or a union of list types). These expose commonality and are called effective
unions (e.g. an effective record type). In the case of a union of records, fields common
to all records are exposed:

define Circle as { int x, int y, int radius }
define Rectangle as { int x, int y, int width, int height }
define Shape as Circle | Rectangle

A Shape is either a Rectangle or a Circle (which are both record types). Any
variable of type Shape exposes fields x and y because these are common to all cases.
Finally, it’s interesting to note that the notion of an effective record type is similar, in
some ways, to that of the common initial sequence found in C [37].

Recursive Data Types. Whiley provides recursive types which are similar to the abstract
data types found in functional languages (e.g. Haskell, ML, etc). For example:

define LinkedList as null | {int data, LinkedList next}

int length(LinkedList l):
if l is null:

// l now has type null
return 0

else:
// l now has type {int data, LinkedList next}
return 1 + length(l.next)

Here, we again see how flow typing gives an elegant solution. More specifically, on
the false branch of the type test “l is null”, variable l is automatically retyped
to {int data, LinkedList next} — thus ensuring the subsequent dereference of
l.next is safe. No casts are required as would be needed for a conventional impera-
tive language (e.g. Java). Finally, like all compound structures, the semantics of Whiley
dictates that recursive data types are passed by value (or, at least, appear to be from the
programmer’s perspective).

Performance. Many of our choices (e.g. value semantics and unbounded arithmetic)
have a potentially detrimental effect on performance. Whilst this is a trade-off we ac-
cept, there are existing techniques which can help. For example, we can use reference
counting to minimise unnecessary cloning of compound structures (see e.g. [38]). Fur-
thermore, we can exploit the specifications that are an integral part of Whiley programs.
That is, when the compiler can prove an integer will remain within certain bounds, it is
free to use a fixed-width type (e.g. a 32bit int).

54

3 Verification

A key goal of the Whiley project is to develop an open framework for research in
automated software verification. As such, we now explore verification in Whiley.

Example 1 — Preconditions and Postconditions. The following Whiley code defines a
function accepting a positive integer and returning a non-negative integer (i.e. natural
number):

int f(int x) requires x > 0, ensures $ >= 0 && $!= x:
return x-1

Here, the function f() includes a requires and ensures clause which correspond
(respectively) to its precondition and postcondition. In this context, $ represents the
return value, and must only be used in the ensures clause. The Whiley compiler stati-
cally verifies that this function meets its specification.

A slightly more unusual example is the following:

int f(int x) requires x >= 0, ensures 2*$ >= $:
return x

In this case, we have two alternative (and completely equivalent) definitions for a nat-
ural number. We can see that the precondition is equivalent to the postcondition by
subtracting $ from both sides. The Whiley compiler is able to reason that these are
equivalent and statically verifies that this function is correct.

Example 2 — Conditionals. Variables in Whiley are described by their underlying type
and those constraints which are shown to hold. As the automated theorem prover learns
more about a variable, it automatically takes this into consideration when checking
constraints are satisfied. For example:

int abs(int x) ensures $ >= 0:
if x >= 0:

return x
else:

return -x

The Whiley compiler statically verifies that this function always returns a non-negative
integer. This relies on the compiler to reason correctly about the implicit constraints
implied by the conditional. A similar, but slightly more complex example is that for
computing the maximum of two integers:

int max(int x, int y)
ensures $ >= x && $ >= y && ($==x || $==y):

if x > y:
return x

else:
return y

Again, the Whiley compiler statically verifies this function meets its specification. Here,
the body of the function is almost completely determined by the specification — how-
ever, in general, this it not the case.

55

Example 3 — Bounds Checking. An interesting example which tests the automated
theorem prover more thoroughly is the following:

null|int indexOf(string str, char c):
for i in 0..|str|:

if str[i] == c:
return i

return null

The access str[i] must be shown as within the bounds of the list str. Here, the range
constructor X..Y returns a list of consecutive integers from X upto, but not including Y

(and, futhermore, if X >= Y then the empty list is returned). Hence, this function can-
not cause an out-of-bounds error and the Whiley compiler statically verifies this.

In fact, the specification for indexOf() could be made more precise as follows:

null|int indexOf(string str, char c)
ensures $ == null || (0 <= $ && $ < |str|):
...

In this case, we are additionally requiring that, when the return value is an int, then it
is a valid index into str. Again, the Whiley compiler statically verifies this is the case.

Example 4 — Loop Invariants. Another example illustrates the use of loop invariants
in Whiley:

int sum([int] list)
requires all { item in list | item >= 0 },
ensures $ >= 0:

r = 0
for v in list where r >= 0:

r = r + v
return r

Here, a bounded quantifier is used to enforce that sum() accepts a list of natural num-
bers. Also, an explicit loop invariant has been given through a where clause. The key
constraint is that summing a list of natural numbers yields a natural number (recall arith-
metic is unbounded and does not overflow in Whiley). The Whiley compiler statically
verifies that sum() does indeed meet this specification. The loop invariant is necessary
to help the compiler generate a sufficiently powerful verification condition to prove the
function meets the post condition (more on this later).

Example 5 — Recursive Structures. The Whiley language supports invariants over re-
cursive structures, as the following illustrates:

define Tree as null | Node

define Node as { int data, Tree lhs, Tree rhs } where
(lhs == null || lhs.data < data) &&
(rhs == null || rhs.data > data)

This defines something approximating the notion of an unbalanced binary search tree.
Unfortunately, the invariant permits e.g. data < lhs.rhs.data for a given tree node

56

and, thus, is not sufficient to properly characterise binary search trees. Whilst our focus
so far has been primarily on array programs and loop invariants, in the future we plan
to place more emphasis on handling recursive structures, such as binary search trees.

4 Hoare Logic

We now briefly review Hoare logic [21] and Dijkstra’s predicate transformers [22], be-
fore examining in §5 a number of challenges we encountered putting them into practice.
Hoare logic provides some important background to understanding how the Whiley ver-
ifying compiler works, and why certain difficulties manifest themselves. Our discussion
here is necessarily brief and we refer to Frade and Pinto for an excellent survey [39].

4.1 Overview

The rules of Hoare logic are presented as judgements involving triples of the form:{
p
}

s
{
q
}

. Here, p is the precondition, s the statement to be executed and q is the
postcondition. Figure 1 presents the rules of Hoare Logic which, following Whiley,
we have extended to include explicit loop invariants. To better understand these rules,
consider the following example:

{
x ≥ 0

}
x = x+ 1

{
x > 0

}

Here we see that, if x ≥ 0 holds immediately before the assignment then, as expected,
it follows that x > 0 holds afterwards. However, whilst this is intuitively true, it is not
so obvious how this triple satisfies the rules of Figure 1. For example, as presented it
does not immediately satisfy H-ASSIGN. However, rewriting the triple is helpful here:

{
x+ 1 > 0

}
x = x+ 1

{
x > 0

}

The above triple clearly satisfies H-ASSIGN and, furthermore, we can obtain the
original triple from it via H-CONSEQUENCE (i.e. since x + 1 > 0 =⇒ x ≥ 0). The
following illustrates a more complex example:

int f(int i) requires i >= 0, ensures $ >= 10:{
i ≥ 0

}

while i < 10 where i >= 0:{
i < 10 ∧ i ≥ 0

}

i = i + 1{
i ≥ 0

}
{
i ≥ 10 ∧ i ≥ 0

}

return i

Here, we have provided the intermediate assertions which tie the Hoare triples together
(note, these are not part of Whiley syntax). These assertions reflect the internal infor-
mation a verifying compiler might use when establishing this function is correct.

57

{
p[x/e]

}
x = e

{
p
} (H-ASSIGN)

{
p
}
s1

{
r
} {

r
}
s2

{
q
}

{
p
}
s1; s2

{
q
} (H-SEQUENCE)

{
p1
}
S
{
q1
}

p2 =⇒ p1 q1 =⇒ q2{
p2
}
s
{
q2
} (H-CONSEQUENCE)

{
p ∧ e1

}
s1

{
q
}

{
p ∧ ¬e1

}
s2

{
q
}

{
p
}
if e1 : s1 else : s2

{
q
}

(H-IF)

{
e1 ∧ e2

}
s
{
e2
}

{
e2
}
while e1 where e2 : s

{
¬e1 ∧ e2

} (H-WHILE)

Fig. 1. Hoare Logic.

4.2 Verification Condition Generation

Automatic program verification is normally done with a verification condition genera-
tor [7]. This converts the program source into a series of logical conditions — called
verification conditions — to be checked by the automated theorem prover. There are
two basic approaches: propagate forward from the precondition; or, propagate back-
wards from the postcondition. We now briefly examine these in more detail.

Weakest Preconditions. Perhaps the most common way to generated verification con-
ditions is via the weakest precondition transformer [22]. This determines the weakest
precondition (written wp(s,q)) that ensures a statement s meets a given postcondi-
tion q. Roughly speaking, this corresponds to propagating the postcondition backwards
through the statement. For example, consider verifying this triple:

{
x ≥ 0

}
x = x+ 1

{
x > 0

}

Propagating x > 0 backwards through x = x+ 1 gives x+ 1 > 0 via H-ASSIGN.
From this, we can generate a verification condition to check that the given precondition
implies this calculated weakest precondition (i.e. x ≥ 0 =⇒ x+ 1 > 0). To under-
stand this process better, let’s consider verifying a Whiley function:

int f(int x) requires x >= 0, ensures $ >= 0:
x = x - 1
return x

The implementation of this function does not satisfy its specification. Using weakest
preconditions to determine this corresponds to the following chain of reasoning:

x ≥ 0 =⇒ wp(x = x− 1, x ≥ 0)
↪→ x ≥ 0 =⇒ x− 1 ≥ 0

↪→ false

Here, the generated verification condition is x ≥ 0 =⇒ wp(x = x− 1, x ≥ 0). This is
then reduced to a contradiction (e.g. by the automated theorem prover) which indicates
the original program did not meet its specification.

58

Strongest Postconditions. By exploiting Floyd’s rule for assignment [20], an alterna-
tive formulation of Hoare logic can be developed which propagates in a forward di-
rection and, thus, gives a strongest postcondition transformer [40, 39]. This determines
the strong postcondition (written sp(p,s)) that holds after a given statement s with pre-
condition p. For example, propagating x = 0 forwards through x = x+ 1 yields x = 1.
Using strongest postconditions to verify functions is similar to using weakest precon-
ditions, except operating in the opposite direction. Thus, for a triple {p} s {q}, we
generate the verification condition sp(p, s) =⇒ q. For example, consider:

{
x = 0

}
x = x+ 1

{
x > 0

}

In this case, the generated verification condition will be x = 1 =⇒ x > 0, which can
be trivially established by an automated theorem prover.

5 Experiences

In the previous section, we outlined the process of automatic verification using Hoare
logic and Dijkstra’s predicate transformers. This was the starting point for developing
our verifying compiler for Whiley. However, whilst Hoare logic provides an excellent
foundation for reasoning about programs, there remain a number of hurdles to overcome
in developing a practical tool. We now reflect on our experiences in this endeavour using
examples based on those we have encountered in practice.

5.1 Loop Invariants

The general problem of automatically determining loop invariants is a hard algorithmic
challenge (see e.g. [41–43]). However, we want to cover as many simple cases as pos-
sible to reduce programmer burden. We now examine a range of simple cases that, in
our experience, appear to occur frequently.

Challenge 1 — Loop Invariant Variables. From the perspective of a practical verifi-
cation tool, the rule H-WHILE from Figure 1 presents something of a hurdle. This is
because it relies on the programmer to completely specify the loop invariant even in
cases where this appears unnecessary. For example, consider the following Whiley
program:

int f(int x) requires x > 0, ensures $ >= 10:
i = 0
while i < 10 where i >= 0:

i = i + x
return i

Intuitively, we can see this program satisfies its specification. Unfortunately, this pro-
gram cannot be shown as correct under the rules of Figure 1 because the loop invariant
is too weak. Unfortunately, rule H-WHILE only considers those facts given in the loop
condition and the declared loop invariant — hence, all information about x is discarded.
Thus, under H-WHILE, the verifier must assume that x could be negative within the loop
body — which may seem surprising because x is not modified by the loop!

59

We refer to x in the example above as a loop invariant variable. To verify this
program under rule H-WHILE, the loop invariant must be strengthened as follows:

int f(int x) requires x > 0, ensures $ >= 10:
i = 0
while i < 10 where i >= 0 && x >= 0:

i = i + x
return i

Now, one may say the programmer made a mistake here in not specifying the loop
invariant well enough; however, our goal in developing a practical tool is to reduce
programmer effort as much as possible. Therefore, in the Whiley verifying compiler,
loop invariant variables are identified automatically so that the programmer does not
need to respecify their invariants.

Challenge 2 — Simple Synthesis. As mentioned above, generating loop invariants in
the general case is hard. However, there are situations where loop invariants can easily
be determined. The following illustrates an interesting example:

int sum([int] xs)
requires all { x in xs | x >= 0 }, ensures $ >= 0:

i = 0
r = 0
while i < |xs| where r >= 0:

r = r + xs[i]
i = i + 1

return r

This function computes the sum of a list of natural numbers, and returns a natural
number. The question to consider is: did the programmer specify the loop invariant
properly? Unfortunately, the answer again is: no. In fact, the loop invariant needs to be
strengthened as follows:

...
while i < |xs| where r >= 0 && i >= 0:

r = r + xs[i]
i = i + 1

return r

The need for this is frustrating as, intuitively, it is trivial to see that i >= 0 holds
throughout. In the future, we aim to automatically synthesize simple loop invariants
such as this.

Observation. The Whiley language also supports the notion of a constrained type as
follows:

define nat as int where $ >= 0

Here, the define statement includes a where clause constraining the permissible
values for the type ($ represents the variable whose type this will be). Thus, nat defines
the type of non-negative integers (i.e. the natural numbers).

60

An interesting aspect of Whiley’s design is that local variables are not explicitly
declared. This gives Whiley the look-and-feel of a dynamically typed language and
goes towards our goal of making the language accessible. In fact, permitting variable
declarations would provide an alternative solution to the above issue with sum():

int sum([int] xs)
requires all { x in xs | x >= 0 }, ensures $ >= 0:

nat i = 0
nat r = 0
while i < |xs|:

r = r + xs[i]
i = i + 1

return r

Here, variable declarations are used to restrict the permitted values of variables i
and r throughout the function. Unfortunately, Whiley does currently not permit local
variable declarations and, hence, the above is invalid. In the future, we plan to support
them for this purpose, allthough care is needed to integrate them with flow typing.

Challenge 3 — Loop Invariant Properties. Whilst our verifying compiler easily handles
loop invariant variables, there remain situations when invariants need to be needlessly
respecified. Consider the following:

[int] add([int] v1, [int] v2)
requires |v1| == |v2|, ensures |$| == |v1|:

i = 0
while i < |v1| where i >= 0:

v1[i] = v1[i] + v2[i]
i = i + 1

return v1

This example adds two vectors of equal size. Unfortunately, this again does not
verify under the rule H-WHILE because the loop invariant is too weak. The key problem
is that v1 is modified in the loop and, hence, our above solution for loop invariant
variables does not apply. Following rule H-WHILE, the verifying compiler can only
reason about what is specified in the loop condition and invariant. Hence, it knows
nothing about the size of v1 after the loop. This means, for example, it cannot establish
that |v1| == |v2| holds after the loop. Likewise (and more importantly in this case),
it cannot establish that the size of v1 is unchanged by the loop (which we refer to as
a loop invariant property). Thus, it cannot establish that the size of the returned vector
equals that held in v1 on entry, and reports the function does not meet its postcondition.

In fact, it is possible to specify a loop invariant which allows the above function to
be verified by our compiler. Since v2 is a loop invariant variable and |v1| == |v2|

held on entry, we can use i >= 0 && |v1| == |v2| as the loop invariant.

Observation. The example above presents an interesting challenge that, by coincidence,
can be resolved by exploiting a loop invariant variable. However, it raises a more general
question: how can we specify that the size of a list is loop invariant? Unfortunately, this
is impossible in the Whiley language developed thus far because it requires some notion

61

of a variable’s value before and after the loop body is executed. To illustrate, consider
the following hypothetical syntax in Whiley:

...
while i < |v1| where i >= 0 && |v1‘| == |v1|:

v1[i] = v1[i] + v2[i]
i = i + 1

return v1

Here, v1‘ represents the value of v1 on the previous iteration. Unfortunately, this
syntax is not yet supported in Whiley and, furthermore, its semantics are unclear. For
example, on entry to the loop it’s unclear how |v1‘| == |v1| should be interpreted.

Challenge 4 — Overriding Invariants. In most cases, the loop condition and invariant
are used independently to increase knowledge. However, in some cases, they need to be
used in concert. The following illustrates:

[int] create(int count, int value)
requires count >= 0, ensures |$| == count:

r = []
i = 0
while i < count:

r = r + [value]
i = i + 1

return r

This example uses the list append operator (i.e. r + [value]) and is surprisingly
challenging. An obvious approach is to connect the size of r with i as follows:

...
while i < count where |r| == i:

r = r + [value]
i = i + 1

return r

Unfortunately, this is insufficient under the rule H-WHILE from Figure 1. This is
because, after the loop is complete, the rule establishes the invariant and the negated
condition. Thus, after the loop, we have i ≥ count ∧ |r| == i, but this is insufficient
to establish that |r| == count. In fact, we can resolve this by using an overriding loop
invariant as follows:

...
while i < count where i <= count && |r| == i:

r = r + [value]
i = i + 1

return r

In this case, i ≥ count ∧ i ≤ count ∧ |r| == i holds after the loop, and the au-
tomated theorem prover will trivially establish that |r| == count. We say that the loop
invariant overrides the loop condition because i <= count implies i < count.

62

5.2 Error Reporting
Error reporting is an important practical consideration for any verification tool, as we
want error messages which are as meaningful, and precise, as possible. We now consider
how the two approaches to verification condition generation affect this.

Weakest Preconditions. An unfortunate side-effect of operating in a backwards direc-
tion, as wp(s, q) does, is that reporting useful errors in the source program is more
difficult. For example, consider this example which performs an integer division:

int f(int x) requires x > 0, ensures $ > 0:
x = 1 / (x - 1)
return x

This function contains a bug which can cause a division-by-zero failure (i.e. if x==1 on
entry). Using wp(s, q), a single verification condition is generated for this example:

x > 0 =⇒ (x− 1 6= 0 ∧ 1

x− 1
> 0) (1)

A modern automated theorem prover (e.g. [44, 45]) will quickly establish this condi-
tion does not hold. At this point, the verifying compiler should report a helpful error
message. Unfortunately, during the weakest precondition transform, information about
where exactly the error arose was lost. To identify where the error occurred, there are
two intrinsic questions we need to answer: where exactly in the program code does the
error arise? and, which execution path(s) give rise to the error? The wp(s, q) transform
fails to answer both because it generates a single verification condition for the entire
function which is either shown to hold, or not [46, 47]. One strategy for resolving this
issue is to embed attributes in the verification condition identifying where in the orig-
inal source program particular components originated [7]. Unfortunately, this requires
specific support from the automated theorem prover (which is not always available).

Strongest postconditions. Instead of operating in a backwards direction, our experience
suggests it is inherently more practical to generate verification conditions in a forwards
direction (and there is anecdotal evidence to support this [39]). Recall that this corre-
sponds to generating strongest postconditions, rather than weakest preconditions. The
key advantage is that verification conditions can be emitted at the specific points where
failures may occur. In the above example, there are two potential failures: 1) 1/(x-1)
should not cause division-by-zero; 2) the postcondition $ > 0 must be met. A forward
propagating verification condition generator can generate separate conditions for each
potential failure. For example, it can emit the following verification conditions:

x > 0 =⇒ x− 1 6= 0 (2)

x > 0 =⇒ 1

x− 1
> 0 (3)

Each of these can be associated with the specific program point where it originated
and, in the case it cannot be shown, an error can be reported at that point. For example,
since the first verification condition above does not hold, an error can be reported for the
statement x = 1/(x− 1). When generating verification conditions based on wp(s, q),
it is hard to report errors at the specific point they arise because, at each point, only the
weakest precondition for subsequent statements is known.

63

6 Related Work

Hoare provided the foundation for formalising work in this area with his seminal paper
introducing Hoare Logic [21]. This provides a framework for proving that a sequence
of statements meets its postcondition given its precondition. Unfortunately Hoare logic
does not tell us how to construct such a proof; rather, it gives a mechanism for checking
a proof is correct. Therefore, to actually verify a program is correct, we need to construct
proofs which satisfy the rules of Hoare logic.

The most common way to automate the process of verifying a program is with a
verification condition generator. As discussed in §4.2, such algorithms propagate infor-
mation in either a forwards or backwards direction. However, the rules of Hoare logic
lend themselves more naturally to the latter [39]. Perhaps for this reason, many tools
choose to use the weakest precondition transformer. For example, the widely acclaimed
ESC/Java tool computes weakest preconditions [7], as does the Why platform [48],
Spec# [49], LOOP [50], JACK [51] and SnuggleBug [52]. This is surprising given that
it leads to fewer verification conditions and, hence, makes it harder to generate use-
ful error messages (recall our discusion from §4.2). To workaround this, Burdy et al.
embed path information in verification conditions to improve error reporting [51]. A
similar approach is taken in ESC/Java, but requires support from the underlying auto-
mated theorem prover [45]. Denney and Fischer extend Hoare logic to formalise the
embedding of information within verification conditions [53]. Again, their objective is
to provide useful error messages.

The Dafny language has been developed with similar goals in mind to Whiley [14].
In particular, Dafny was designed to simplify verification and, to this end, makes similar
choices to Whiley. For example, all arithmetic is unbounded and a strong division is
made between functional and imperative constructs. Here, pure functions are supported
for use in specifications and directly as code, whilst methods may have side-effects and
can describe pointer-based algorithms. These two aspects are comparable (respectively)
to Whiley’s functional core and imperativer outer layer. Finally, Dafny supports explicit
pre- and post-conditions for functions and methods which are discharged using Z3 [44].

7 Conclusion

In this paper, we reflected on our experiences using the Whiley verifying compiler. In
particular, we identified a number of practical considerations for any verifying compiler
which are not immediately obvious from the underlying theoretical foundations.

Acknowledgements: This work is supported by the Marsden Fund, administered by the
Royal Society of New Zealand.

References

1. C.A.R. Hoare. The verifying compiler: A grand challenge for computing research. JACM,
50(1):63–69, 2003.

2. S. King. A Program Verifier. PhD thesis, Carnegie-Mellon University, 1969.
3. L. Peter Deutsch. An interactive program verifier. Ph.d., University of California, 1973.

64

4. D. I. Good. Mechanical proofs about computer programs. In Mathematical logic and pro-
gramming languages, pages 55–75, 1985.

5. D. C. Luckham, S. M. German, F. W. von Henke, R. A. Karp, P. W. Milne, D. C. Oppen,
W. Polak, and W. L. Scherlis. Stanford pascal verifier user manual. Technical Report CS-
TR-79-731, Stanford University, Department of Computer Science, 1979.

6. David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static
checking. SRC Research Report 159, Compaq Systems Research Center, 1998.

7. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for Java. In Proc. PLDI, pages 234–245, 2002.

8. Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and David R. Cok. How
the design of JML accommodates both runtime assertion checking and formal verification.
Science of Computer Programming, 55(1-3):185–208, March 2005.

9. David R. Cok and Joseph Kiniry. ESC/Java2: Uniting ESC/Java and JML. In Proc. CASSIS,
volume 3362 of LNCS, pages 108–128. Springer-Verlag, 2005.

10. Mike Barnett, K. Rustan, M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview. Technical report, Microsoft Research, 2004.

11. Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariants. Journal of Object Technology,
3(6):27–56, 2004.

12. Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In Proc. FMCO, pages
364–387, 2006.

13. K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
Proc. LPAR, LNCS. Springer-Verlag, 2010.

14. K. Rustan M. Leino. Developing verified programs with Dafny. In Proc. VSTTE, volume
7152 of LNCS, pages 82–82. Springer-Verlag, 2012.

15. The whiley programming language, http://whiley.org.
16. D. J. Pearce and L. Groves. Whiley: a platform for research in software verification. In Proc.

SLE, page (to appear), 2013.
17. D. Pearce and J. Noble. Implementing a language with flow-sensitive and structural typing

on the JVM. Electronic Notes in Theoretical Computer Science, 279(1):47–59, 2011.
18. D. J. Pearce. Sound and complete flow typing with unions, intersections and negations. In

Proc. VMCAI, pages 335–354, 2013.
19. R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman, and B. A. Brady. De-

ciding bit-vector arithmetic with abstraction. In Proc. TACAS, volume 4424 of LNCS, pages
358–372. Springer-Verlag, 2007.

20. R. W. Floyd. Assigning meaning to programs. In Proc. AMS, volume 19, pages 19–31.
American Mathematical Society, 1967.

21. C.A.R. Hoare. An axiomatic basis for computer programming. CACM, 12, 1969.
22. Edsger W. Dijkstra. Guarded commands, nondeterminancy and formal derivation of pro-

grams. CACM, 18:453–457, 1975.
23. Atanas Rountev. Precise identification of side-effect-free methods in Java. In Proc. ICSM,

pages 82–91. IEEE Computer Society, 2004.
24. A. Salcianu and M. Rinard. Purity and side effect analysis for Java programs. In Proc.

VMCAI, pages 199–215, 2005.
25. Alan Mycroft. Programming language design and analysis motivated by hardware evolution.

In Proc. SAS, pages 18–13. Springer-Verlag, 2007.
26. Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for untyped languages. In Proc.

ICFP, pages 117–128, 2010.
27. A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing local control and state using flow analysis.

In Proc. ESOP, pages 256–275, 2011.

65

28. Franco Barbanera and Mariangiola Dezani-Cian Caglini. Intersection and union types. In In
Proc. TACS, pages 651–674, 1991.

29. Atsushi Igarashi and Hideshi Nagira. Union types for object-oriented programming. Journal
of Object Technology, 6(2), 2007.

30. B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
31. Tony Hoare. Null references: The billion dollar mistake, presentation at QCon, 2009.
32. Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-null types in an

object-oriented language. In Proc. OOPSLA, pages 302–312. ACM Press, 2003.
33. Torbjörn Ekman and Görel Hedin. Pluggable checking and inferencing of non-null types for

Java. Journal of Object Technology, 6(9):455–475, 2007.
34. Patrice Chalin and Perry R. James. Non-null references by default in Java: Alleviating the

nullity annotation burden. In Proc. ECOOP, pages 227–247. Springer, 2007.
35. Chris Male, David J. Pearce, Alex Potanin, and Constantine Dymnikov. Java bytecode veri-

fication for @NonNull types. In Proc. CC, pages 229–244, 2008.
36. Laurent Hubert. A non-null annotation inferencer for Java bytecode. In Proc. PASTE, pages

36–42. ACM, 2008.
37. ISO/IEC. international standard ISO/IEC 9899, programming languages — C, 1990.
38. Nurudeen Lameed and Laurie J. Hendren. Staged static techniques to efficiently implement

array copy semantics in a MATLAB JIT compiler. In Proc. CC, pages 22–41, 2011.
39. Maria João Frade and Jorge Sousa Pinto. Verification conditions for source-level imperative

programs. Computer Science Review, 5(3):252–277, 2011.
40. Mike Gordon and Hélène Collavizza. Forward with Hoare. In Reflections on the Work of

C.A.R. Hoare, History of Computing, pages 101–121. Springer-Verlag, 2010.
41. R. Chadha and D. A. Plaisted. On the mechanical derivation of loop invariants. Journal of

Symbolic Computation, 15(5 & 6):705–744, 1993.
42. K. Rustan M. Leino and Francesco Logozzo. Loop invariants on demand. In Proc. APLAS,

volume 3780 of LNCS, pages 119–134. Springer-Verlag, 2005.
43. Carlo A. Furia and Bertrand Meyer. Inferring loop invariants using postconditions. CoRR,

abs/0909.0884, 2009.
44. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Proc. TACAS,

pages 337–340, 2008.
45. Detlefs, Nelson, and Saxe. Simplify: A theorem prover for program checking. JACM, 52,

2005.
46. K. Rustan M. Leino, Todd D. Millstein, and James B. Saxe. Generating error traces from

verification-condition counterexamples. Science of Computer Programming, 55(1-3):209–
226, 2005.

47. Ivan Jager and David Brumley. Efficient directionless weakest preconditions. Technical
Report CMU-CyLab-10-002, Carnegie Mellon University, 2010.

48. Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus platform for
deductive program verification. In Proceedings of CAV, pages 173–177. Springer-Verlag,
2007.

49. Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured programs. In
Proc. PASTE, pages 82–87. ACM Press, 2005.

50. B. Jacobs. Weakest pre-condition reasoning for Java programs with JML annotations. JLAP,
58(1–2):61–88, 2004.

51. L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: a developer-oriented approach.
In Proc. FME, volume 2805 of LNCS, pages 422–439. Springer-Verlag, 2003.

52. Satish Chandra, Stephen J. Fink, and Manu Sridharan. Snugglebug: a powerful approach to
weakest preconditions. In Proc. PLDI, pages 363–374. ACM Press, 2009.

53. Ewen Denney and Bernd Fischer. Explaining verification conditions. In Proc. AMAST,
volume 5140 of LNCS, pages 145–159. Springer, 2008.

66

An UPPAAL Framework for Model Checking

Automotive Systems with FlexRay Protocol

Xiaoyun Guo1, Hsin-Hung Lin2, Kenro Yatake1, and Toshiaki Aoki1

1 School of Information Science
Japan Advanced Institute of Science and Technology, Ishikawa, Japan

{xiaoyunguo,k-yatake,toshiaki}@jaist.ac.jp
2 School of Information Science and Electrical Engineering

Kyushu University, Fukuoka, Japan
h-lin@ait.kyushu-u.ac.jp

Abstract. This paper introduces a method and a framework for veri-
fying automotive system designs using model checking. The framework
is based on UPPAAL, a timed model checker, and focuses on checking
automotive system designs with FlexRay communication protocol, a de
facto standard of automotive communication protocols. The framework
is composed of FlexRay model and application model where the former
is built by abstractions to the speci�cations of FlexRay protocol. In the
framework, FlexRay model is reusable for di�erent application models
with appropriate parameter settings. To the best of our knowledge, the
framework is the �rst attempt on model checking automotive system de-
signs considering communication protocols. Checking of core properties
including timing properties are conducted to evaluate the framework.

1 Introduction

Automotive systems mainly adopt electronic control units (ECUs) to realize X-
by-wire technology [10]. With the X-by-wire technology, requirements or func-
tionalities which were not mechanically realizable are possible. Generally, ECUs
in an automotive system follow communication protocols to communicate with
each other through one or multiple buses. Since communication protocols greatly
a�ect the performance of an automotive system, protocols which can support
high transmission rate while still having reliability are demanded. Recently,
FlexRay communication protocol is considered the de facto standard of automo-
tive communication protocols [1, 13]. FlexRay supports high transmission rate up
to 10Mbs while still having fault-tolerance abilities. These characteristics make
FlexRay especially suitable for safety critical systems.

Increasing requirements for safety, driving assistance, etc., result in more
complexity in the development of automotive systems. More ECUs are required
in automotive systems and hence the need for handling heavy communica-
tions. Therefore, validation and veri�cation of automotive systems became much
harder. In industry, integration platform based solutions are proposed to support
automotive system design processes [7, 15, 14]. Integration platforms provide vir-
tual simulation and testing for automotive system designs and implementations
and thus save the cost of testing on devices. Although integration platforms

67

can perform early phase analysis, behavioral analysis as well as veri�cation of
design models is hard to conduct because simulation and testing only focus on
speci�c signals or nodes in a system. On the other hand, timed model checking
techniques are proven e�ective on veri�cation of real time systems [9, 2]. There-
fore, introducing timed model checking on verifying automotive system designs
is considered appropriate and necessary.

This paper proposes a method for verifying design models of automotive sys-
tems using timed model checking technique. The method considers automotive
systems with FlexRay protocol and focuses on communications between ECUs.
Based on the method, a framework is implemented on UPPAAL, a timed model
checker [3]. UPPAAL has a nice graphical user interface for precisely describing
time constrained behaviors and is widely used in verifying time critical systems.
However, when considering automotive systems with FlexRay protocol, it is rec-
ognized that the behaviors of FlexRay and tasks a�ect each other all the time.
This phenomena is di�cult to be precisely modeled using primitive channel syn-
chronizations provided by UPPAAL. Therefore, we model an automotive system
as the combination of FlexRay model and application model, where the former
is reusable with di�erent parameter settings of systems. Developers can build
an automotive system design on application model and verify it with FlexRay
model plus proper parameter settings.

The proposed model will focus on veri�cation of design models, especially be-
havior and timing related to message transmissions. Three steps of abstractions
are applied on the FlexRay communication protocol to remove parts and behav-
iors not in focus, and then build FlexRay model. To evaluate the framework,
experiments on simple systems are demonstrated to examine if the framework
precisely models the behavior of normal transmissions in FlexRay protocol and
its ability of timing analysis for automotive system designs.

2 Related Work

Practically, automotive systems are tested and validated using integration plat-
form solutions in the industry [7, 15, 14]. Integration platforms provide virtual
environments for simulation and analysis of automotive systems. However, test-
ing or simulation can only focus on speci�c signals or nodes in a system so that
high level analyses such as behavioral analysis are di�cult. Compared to inte-
grated platforms, our framework focuses on behavior analysis and veri�cation
with time, which makes up the above de�ciency. Also, to the best of our knowl-
edge, the framework is the �rst attempt for veri�cation support of automotive
system designs considering communication protocol.

Another important issue of automotive systems is scheduling or performance
analysis which analyzes expected execution time of applications and sees whether
deadlines can be met or not. For FlexRay protocol, dealing with dynamic seg-
ments in FlexRay protocol is the most important as well as di�cult issue in
approaches of scheduling analysis [8, 17, 11, 16]. Though our work does not ex-
plicitly consider scheduling analysis due to simpli�cation on ECUs, the frame-

68

��
�

���
�

�
�

�
�

���
�

��	

�

��
�

���
�

�
�

�
�

���
�

��	

�

��
�

���
�

�
�

�
�

���
�

��	

�

��

(a) System example

�
�

����������	�
�

�
�

�
�

�
�

��
�	������	�
� ��

������

� � � � � �

�
�

����������	�
�

�
�

��
�	������	�
� ��

������

� � � � � �

��������
��� ��������
���

� ���
� ��� ���
���

(b) Communication cycle example

Fig. 1. An example automotive system with FlexRay

work is similar to model-based scheduling analysis which has been proved useful
on other platforms [4, 5]. Therefore, we argue that scheduling analysis is also
possible using our framework with some improvements.

For FlexRay protocol itself, correctness of FlexRay protocol is veri�ed in a
few aspects. M. Gerke et al. veri�ed the physical layer of FlexRay and proved
the fault-tolerance guarantees in FlexRay [6]. J. Malinský and J. Novák veri�ed
the start-up mechanism of FlexRay [12]. Based on the results of the above work,
our framework assumes the correctness of the physical layer, i.e. encoding and
decoding of frames, and the start-up of FlexRay. As a result, we did not imple-
ment physical layer and start up mechanism in FlexRay model and focus only
on the behavior of abstracted frame transmissions.

3 Automotive Systems with FlexRay Protocol

In the speci�cation of FlexRay, the controller-host interface (CHI) is implemen-
tation dependent. For veri�cation purpose, since di�erent implementations need
di�erent models, it is necessary to declare which implementation is considered
in this paper. In this section, an example of automotive system with FlexRay
shown in Fig. 1 is introduced for demonstration.

As Fig. 1(a) shows, an automotive system consists of numbers of nodes con-
nected to a bus for communications with each other. Each node consists of three
parts: an ECU, a controller-host interface (CHI), and a communication con-
troller (CC). In each node, tasks of applications are running on the ECU and
send/receive data to/from bu�ers of the CHI. A CHI contains several bu�ers
designated for speci�c data streams called frames in FlexRay. For every frame,

69

a sending and a receiving bu�er are speci�ed. The sending bu�er of a frame is
implemented in the CHI where the ECU of same node has tasks designated to
send data by the frame. The receiving bu�er of a frame is implemented in the
CHI where the ECU of same node has tasks designated to receive data by the
frame. When an automotive system is executing, the CC of a node counts the
time in each cycle and sends a frame from the corresponding bu�er to the bus
at the designated time. The CC also receives a frame and writes to the corre-
sponding bu�er if the frame is designated to be received by the node. Note that
only one frame is allowed to be sent and received at the same time. It should
also be noted that in a node, the status of the CC, i.e. current number of cycles,
current number of slots, etc., is accessible to tasks in the ECU through the CHI
and thus makes more complicated behaviors possible. In Fig. 1(a), The system
has three nodes, Node1, Node2, and Node3. Six frames are de�ned and sending
bu�ers are speci�ed in the corresponding CHIs: m1 and m5 in CHI1, m2 and
m4 in CHI2, m3 and m6 in CHI3

3.

Fig. 1(b) demonstrates a two cycle instance of communications of the sys-
tem shown in Fig. 1(a). Communications in FlexRay are performed based on
periodic cycles. A cycle contains two time intervals with di�erent policies for
accessing the bus: static segment and dynamic segment4. The lengths of the two
segments are �xed in every cycle and the time in a cycle is counted using slots:
static slots and dynamic slots. A static slot has �xed length de�ned by global
con�guration parameter gdStaticSlot as a common time unit called macrotick
(MT) for all nodes in a system and the length of a static segment of is de�ned
by global con�guration parameter gNumberOfStaticSlots. On the other hand,
dynamic slots are �exible and composed of several minislots. A minislot is the
basic unit of a dynamic segment and its length is de�ned by global con�guration
parameter gdMinislot as macroticks. The length of a dynamic segment is then
de�ned by global con�guration parameter gNumberOfMinislots. The index of a
frame should be de�ned to map with a slot number therefore a frame will be
sent at designated time interval, i.e. slot, in a cycle.

In Fig. 1(b), the index of a frame is set to the same slot number for conve-
nience. Frame m1, m2, and m3 are set to static slots, slot 1, 2, and 3. Frame
m4, m5, and m6 are set to dynamic slots, slot 4, 5, and 6. In the static segment
of the �rst cycle, frame m1 and m3 are sent in slot 1 and slot 3. Though frame
m2 is not sent, the time interval of slot 2 is still elapsed with no transmission.
In the dynamic segment of the �rst cycle, m4 and m6 are sent in slot 4 and slot
6. Frame m4 has the length of four minislots and m6 has the length of seven
minislots. Slot 5 is not sent in �rst cycle but still occupies the time interval
of one minislot. When the maximum slot number is reached but the maximum
minislot number is not, the time proceeds with no transmission till the end of
the dynamic segment. The second cycle is similar where only m2 and m5 are
sent.

3 Receiving bu�ers are not shown in the �gure.
4 Here we ignore symbol window (SW) and network idle time (NIT). The former is optional and
the latter is for adjustment of cycle length. Both SW and NIT do not a�ect communications in
automotive system designs.

70

������

����	
��

��	��

�����	��

����	���

������� �����

����	���	��������

���������

�� ��	���	��

����

����	���	��

����

Fig. 2. The framework

4 The Framework

Fig. 2 shows the structure of the UPPAAL framework for veri�cation of automo-
tive systems with FlexRay demonstrated in Section 3. The framework consists
of several parts: UPPAAL engine, FlexRay model, Application model, Con�gura-
tion, and Properties. The parts of the framework are associated with three layers:
base, communication, and application layers. The foundation of the framework
is the UPPAAL model checker. FlexRay model which models the FlexRay pro-
tocol is the main component of the communication layer. Application model

which represents the design model of an automotive system belongs to the ap-
plication layer. Con�guration and Properties are associated to both communica-
tion and application layers: Con�guration contains parameters relating to both
FlexRay and application models; Properties specify queries for veri�cation of
both FlexRay and application models in UPPAAL. FlexRay model and applica-
tion model, which are the main components of the framework, will be described
in Section 4.1 and Section 4.2 separately. Con�guration and Properties will be
mentioned within examples in Section 4.3 and Section 5.

4.1 FlexRay Model

The speci�cations of the FlexRay communication protocol include details of im-
plementations on hardwares irrelevant to veri�cation of design models of automo-
tive systems. Therefore, to build FlexRay model in our framework, abstractions
are needed to trim o� irrelevant parts and behaviors. Generally, the abstractions
are processes of modeling the speci�cations of the FlexRay protocol based on
our understanding of the FlexRay protocol and our knowledge/experiences of
using UPPAAL. We divide the processes of the abstractions into three steps: (1)
essential component selection, (2) functionality reduction, and (3) state space
reduction. Fig. 3 shows the structure of the FlexRay model after the abstraction.
The details of the three steps abstraction are described as follows.

Essential Component Selection For the purpose of verifying the design
model of an automotive system, we only focus on functionalities relating to
sending and receiving frames when building FlexRay model. The �rst step is
then to select essential and necessary components providing frame transmission
functionalities. Since we only focus on design level veri�cation, speci�cations
regarding low level behaviors such as clock synchronization and frame encod-
ing/decoding are out of focus. We also assume that there is no noise interference

71

�
�

�
�

���

�����	
���������

�
�

�

��
���

�������� ���

���

�����
� �����

���
�

���
�

���
�

�

Fig. 3. The structure of FlexRay model

in transmissions5. Therefore, we only need three components in FlexRay proto-
col: protocol operation control (POC), media access control (MAC), and frame

and symbol processing (FSP). POC monitors overall status of CC and manages
other components.MAC is responsible for sending frames in corresponding send-
ing bu�ers of CHI at speci�c times in each cycle. FSP is responsible for receiving
frames and storing data to receiving bu�ers in CHI for tasks in ECUs to read.
Besides POC, MAC, and FSP, we also need Timer which helps monitoring of
timing in each cycle and slot. Timer is not treated as a component in the spec-
i�cations of the FlexRay protocol but we have to build it since timer is used
everywhere in almost all components of a CC. The bus is implemented as a
variable accessible to MAC and FSP. The sending/receiving of frames is then
represented by writing/reading data to/from the bus variable.

Functionality Reduction After the �rst step of the abstractions, the selected
components POC, MAC, and FSP still have irrelevant behaviors which do not
participate in activities related to frame transmissions. Also, the irrelevant be-
haviors may still cooperate with components already removed in the �rst step of
the abstractions. Therefore, the second step is to remove the irrelevant behav-
iors and functionalities of the selected components. In the framework, we only
focus on regular transmissions of frames and therefore only the normal state of
POC is meaningful and other states are ignored. Furthermore, we consider that
the clock is synchronized between nodes and there is no external interference in
normal transmissions. This results that some functionalities of CC become un-
necessary for FlexRay model. For example, functionalities such as adjustments
for reactions on transmission errors, e.g. fault tolerance feature of the bus, can
be ignored. Also, similar functionalities mainly related to error managements in
other components and CHI are ignored. Note that our most priority of model-
ing the FlexRay protocol is to ful�ll the need of timing analysis, which is not
required to consider situations with errors in the �rst place. Therefore, the mod-

5 Generally, FlexRay only captures and throws errors. An application has the responsibility to
handle errors thrown by FlexRay. Though not in the scope of this paper, if transmission errors
are of interest, they can be modeled by adding error situations/states explicitly in FlexRay model.

72

eling process is more like picking up the traces of successful frame transmissions
but trimming o� error processing behaviors.

State Space Reduction After the above two steps of the abstractions, FlexRay
model looks simple considering the number of explicit states and transitions.
However, the complexity is still high and hardly acceptable since there are many
variables especially clocks in FlexRay model. In some cases even the size of an
application is not considered large, UPPAAL su�ers from state explosion when
checking properties. Therefore, further abstraction is necessary to reduce the
state space while the behaviors of frame transmissions in the FlexRay protocol
is still precisely modeled. By reviewing the above two steps of abstractions, recall
that there are two assumptions of FlexRay model in the framework: (1) all nodes
are synchronized all the time; (2) there is no error during frame transmissions.
With (1), all nodes start a cycle at the same time; with (2) all nodes �nish a cycle
at the same time. That is, no node is going to be late because of transmission
errors. Therefore, it is reasonable to conclude that we do not need a CC for
every node, i.e. one CC is enough. This helps us to remove the complicated
behaviors which only synchronize the clocks of nodes of a system. Furthermore,
we also cancel the process of counting minislots in dynamic segment and instead
calculating the number of minislots directly using lengths of dynamic frames
and related parameters. This helps avoiding small time zones not meaningful in
checking properties. Most properties concern the timing of the start and the end
of a frame transmission but not in the middle of a frame transmission.

FlexRay model constructed after three steps of abstraction is shown in Fig. 4,
where MAC is separated into MAC_static and MAC_dynamic. An example
will be given in Section 4.3 for demonstrating how FlexRay model works in
cooperation with Application model explained in Section 4.2.

4.2 Application Model

Application model represents ECUs in an application and thus consists of multi-
ple tasks. As shown in the upper part of Fig. 3, application model accesses the
bu�ers in CHIs to communicate with CCs for sending/receiving frames. Since
Application model tightly depends on actual automotive systems to be designed
by developers, we leave most of the jobs to developers in building Application

model and give only simple directions on how to use FlexRay model of the frame-
work.

Only one task in an ECU For simplicity, in this paper we build one module
in UPPAAL to represent one task and an ECU only has one task. Therefore we
can omit modeling of schedulers in ECUs. Developers have to build a scheduler
module when scheduling in an ECU is considered necessary.

Use of functions to access bu�ers in CHIs In an automotive system
with FlexRay protocol, tasks in di�erent nodes cannot communicate directly
but through FlexRay protocol, i.e. FlexRay model of the framework. Therefore,
when sending data, a task has to write data to the corresponding sending bu�er

73

start_up

cycle_start!

w
ait_for_cycle_end

x<
=

startup_offset

vS
S

.vC
ycleC

ounter<
gC

ycleC
ounterM

ax

x:=
0

cycle_end?

vS
S

.vC
ycleC

ounter=
1

cycle_end?
vS

S
.vC

ycleC
ounter+

+
, x=

0

vS
S

.vC
ycleC

ounter=
=

gC
ycleC

ounterM
ax vS

S
.vC

ycleC
ounter<

=
gC

ycleC
ounterM

ax

(a
)
P
O
C

x<
=

gdN
IT

x=
=

gdN
IT

cycle_end!

N
IT

_start?

vS
S

.vS
lotC

ounter:=
0,

x:=
0

(b
)
N
IT

T
im

er_A
ctionP

oint
initial

set_tim
erB

?
T

im
er_S

lotB
oundary

end

x<
=

tS
lotA

ctionP
oint

x:=
0

x:=
0

S
lotS

tart!

set_tim
erA

?

S
lotE

nd!

x:=
0

x<
=

tS
lotB

oundary

x=
=

tS
lotA

ctionP
oint

x=
=

tS
lotB

oundary

(c)
T
im

er

w
ait_for_C

E
_start

go?

w
ait_for_C

H
IR

P

bus_status=
=

C
E

_start

receive(),
reset_bus_fram

e()

go?

go?
check_fram

e_and_update_vS
S

()

bus_status=
=

C
H

IR
P

 &
&

vS
S

.V
alidF

ram
e

bus_status=
=

C
H

IR
P

 &
&

!vS
S

.V
alidF

ram
e

(d
)
F
S
P

w
ait_for_the_static_slot_boundary

w
ait_for_the_action_point

S
lotE

nd?

dyn_seg_start!

S
lotS

tart?

x<
=

fram
e_length

w
ait_cycle_start

w
ait_for_the_end_of_transm

ission

send_m
essage

vS
S

.vS
lotC

ounter<
gN

um
berO

fS
taticS

lots

x:=
0

x:=
0

tS
lotA

ctionP
oint:=

gdA
ctionP

ointO
ffset,

tS
lotB

oundary:=
gdS

taticS
lot,

x:=
0

vS
S

.vS
lotC

ounter=
1

set_tim
erA

!
cycle_start?

bus_status=
ID

LE
bus_status=

C
H

IR
P

bus_status=
C

E
_start,

transm
it()

vS
S

.vS
lotC

ounter+
+

B
ufferE

m
pty()

!B
ufferE

m
pty() &

&
valid_fram

e_length()

x=
=

fram
e_length

vS
S

.vS
lotC

ounter>
=

gN
um

berO
fS

taticS
lots

(e)
M
A
C
sta

tic

w
ait_for_the_end_of_activity1

w
ait_for_the_A

P
_transm

ission_start

w
ait_for_the_end_of_dynam

ic_slot1
end_of_dynam

ic_slot

w
ait_for_the_end_of_dynam

ic_segm
ent

N
IT

_start!

set_tim
erB

!

set_tim
erB

!

set_tim
erB

!

S
lotE

nd?

!B
ufferE

m
pty() &

&
enough_m

inislots()

zM
inislot<

gN
um

berO
fM

inislots

vS
S

.vS
lotC

ounter=
=

gN
um

berO
fS

taticS
lots+

1 &
&

tA
ctionP

oint>
tM

inislotA
ctionP

oint

zM
inislot=

=
gN

um
berO

fM
inislots

start_of_dynam
ic_slot

end_of_dynam
ic_segm

ent

vS
S

.vS
lotC

ounter=
=

cS
lotID

M
ax

gN
um

berO
fM

inislots>
0

gN
um

berO
fM

inislots=
=

0

vS
S

.vS
lotC

ounter<
cS

lotID
M

ax

bus_status=
ID

LE

tS
lotB

oundary:=
adA

ctionP
ointD

ifference

zM
inislot:=

0

vS
S

.vS
lotC

ounter+
+

tS
lotB

oundary:=
fram

e_length

bus_status=
C

E
_start,

transm
it()

tS
lotB

oundary:=
tM

inislotA
ctionP

oint,
zM

inislot+
+

tS
lotB

oundary:=
gdM

inislot*(gN
um

berO
fM

inislots−
zM

inislot),
zM

inislot:=
gN

um
berO

fM
inislots

bus_status=
C

H
IR

P

set_tim
erB

!

S
lotE

nd?

S
lotE

nd?

set_tim
erB

!

S
lotE

nd?

tS
lotB

oundary:=
gdM

inislot,
zM

inislot+
+

dyn_seg_start?

tS
lotB

oundary:=
C

om
puteM

acrotick(),
zM

inislot:=
C

om
puteM

inislot()

set_tim
erB

!

S
lotE

nd?

N
IT

_start!

vS
S

.vS
lotC

ounter+
+

zM
inislot<

gN
um

berO
fM

inislots
vS

S
.vS

lotC
ounter>

gN
um

berO
fS

taticS
lots+

1 or
tA

ctionP
oint<

=
tM

inislotA
ctionP

oint

B
ufferE

m
pty() or

!enough_m
inislots()

zM
inislot=

=
gN

um
berO

fM
inislots

(f)
M
A
C
d
y
n
a
m
ic

F
ig
.
4
.
F
lex

R
ay

m
o
d
el

74

in the CHI of the same node, and let the CC do the transmissions. When receiv-
ing data, the process is similar but in the reverse order. To make things simple,
we prepare functions for reading and writing data from and to speci�ed bu�er.
Developers only need to put these functions as actions on transitions of tasks
and insert proper parameters. The functions are de�ned as follows:

void write_msg_to_CHI(t_msg_slot msg, int value, int len);

int read_msg_from_CHI(t_msg_slot msg);

void clean_send_buffer_CHI(t_msg_slot msg);

void clean_receive_buffer_CHI(t_msg_slot msg);

Since we do not focus on the contents of the data in a frame, the data is
represented simply by integer type and may be ignored. Note that msg of type
integer is the index of a frame as well as the index of the corresponding bu�er;
len is the length of the frame in macroticks. Note that reading the data from
a bu�er does not clean up the bu�er so there are also functions for cleaning
bu�ers. Developers have to clean a bu�er by themselves using bu�er cleaning
functions.

4.3 Example

In this section, a simple sender/receiver example [18] will be demonstrated to
show how the design model of an automotive system built as Application model

looks like and how frames are transmitted by FlexRay model. This example con-
sists of tasks having simple behaviors so that we can focus on reading/writing
bu�ers, frame transmissions, and parameter settings of the system. Fig. 5 shows
the plan of assigning indexes of frames. There are ten messages/frames in-
dexed from 1 to 10. The frames are used in �ve ECUs/tasks, Sender1, Sender2,
Sender3, Sender4, and Receiver. Which task sends/receives which frame can
be easily recognized by directions of the arrows. For example, Sender1 is de-
signed to send frames 1, 3, and 5, and Receiver is designated to receive all
frames. Frames 1 to 6 are static frames and frames 7 to 10 are dynamic frames.

typedef int[1,cSlotIDMax] t_msg_slot;

const t_msg_slot msg1= 1;

...

const t_msg_slot msg10= 10;

As mentioned in section 4.2, the indexes of frames are the same as the in-
dexes of bu�ers. Also, the indexes of frames indicate the slot numbers of the
communication cycles in FlexRay model. Below shows the major parameters of
the example. The unit of parameters is macrotick except the �rst four parame-
ters.

int gCycleCounterMax=6; //max. number of cycle

int gNumberOfStaticSlots=6; //number of static segment slots

int gNumberOfMinislots=32; //number of dynamic segment minislots

int cSlotIDMax=10; //max. number of slot ID

int gdNIT=4; //period of NIT (in macrotick)

int gdActionPointOffset=2; //static offset

75

� � � � � � � � 	 �

������

��������

������ ������ ������

��������

Fig. 5. Frame setting of the sender/receiver example (SR1)

int gdStaticSlot=5; //number of macroticks in a static slot

int gdMinislotActionPointOffset=1; //offset of minislot

int gdMinislot=3; //number of macroticks in a minislot

Fig.6 shows modules of Sender1, Sender3, and Receiver in Application

model, where Sender2 and Sender4 are similar and skipped. Note that go? is the
reception of the urgent channel go. Urgent channel always sends a signal imme-
diately without delay when a transition with go? is �red. For example, by using
go?, Sender1 watches the status of related bu�ers and writes data to a bu�er im-
mediately when the bu�er is detected empty. On the other hand, Sender3 sends
dynamic frames whose length vary from 18 to 20 macroticks. In the framework
we de�ne global variables to represent bu�ers (i.e. status of CHIs) and slot status
(i.e. status of CCs). Application model can access the status of CHIs and CCs
through global variables CHI_Buffer_send, CHI_Buffer_receive, and vSS.

typedef struct {

int[0,MaxDataValue] data;

int[0,pPayloadLengthDynMax] length;

} Buffer;

Buffer CHI_Buffer_send[cSlotIDMax+1]; //sending buffers

Buffer CHI_Buffer_receive[cSlotIDMax+1]; //receiving buffers

typedef struct{

int[0,gCycleCounterMax] vCycleCounter; //current cycle

int[0,cSlotIDMax] vSlotCounter; //current slot

} T_SlotStatus;

T_SlotStatus vSS; //slot status of CC

In this system, sending bu�ers can be considered always �lled for convenience.
Therefore we may focus on the �ow of a static or dynamic frame transmission
in FlexRay model shown in Fig. 4. When the system starts, FlexRay model
starts from POC. Like the ordering of segments in a communication cycle shown
in Fig. 1(b), POC counts the number of cycles and activates MAC_static for
transmitting static frames in the static segment. When the static segment ends,
MAC_static activates MAC_dynamic to start transmitting dynamic frames in
the dynamic segment. When the dynamic segment ends, NIT is activated and
proceeds to the end of the current cycle, then POC takes control again to start
another cycle.

In the static segment, MAC_static calls Timer to set the times of the start
and the end of a static slot. On the other hand, in dynamic segment,MAC_dynamic

76

value: int[5,5] value: int[3,3]

value: int[1,1]

go? go?

go?

CHI_Buffer_send[msg5].length == 0 CHI_Buffer_send[msg3].length == 0

CHI_Buffer_send[msg1].length == 0

write_msg_to_CHI(msg5, value, 2) write_msg_to_CHI(msg3, value, 2)

write_msg_to_CHI(msg1, value, 2)

(a) Sender1

len: int[18,20]

len: int[18,20]

go?

go?

CHI_Buffer_send[msg9].length == 0

CHI_Buffer_send[msg7].length == 0

write_msg_to_CHI(msg9, 59, len)

write_msg_to_CHI(msg7, 57, len)

(b) Sender3

go?
CHI_Buffer_receive[vSS.vSlotCounter].length>0

clean_receive_buffer_CHI(vSS.vSlotCounter)

wait_for_receiving

(c) Receiver

Fig. 6. Selected tasks of the sender/receiver example (SR1)

has to see if there is a dynamic frame to be sent to decide the number of min-
islots to proceed. If there is a dynamic frame to be sent, the frame is sent by
writing the data of the frame, which is the content of the corresponding send-
ing bu�er, to the bus variable. The slot counter vSS.vSlotCounter is increased
by 1 and the minislot counter zMinislot is computed according to the length
of the frame. If there is no dynamic frame to be sent, both zMinislot and
vSS.vSlotCounter are just increased by 1. When the maximum slot number
is reached, the MAC_dynamic will just proceed the remaing minislots to the
maximum number of minislots, and then end the dynamic segment. Note that in
both MAC_static and MAC_dynamic, the bus status is set to EC_start at the
start of a frame transmission and the bus is set to CHIRP when the transmission
ends. As the receiving side of frame transmissions, FSP monitors bus status all
the time in a communication cycle and starts to receive a frame when CE_start

is detected. The end of a frame transmission is at the point that CHIRP is de-
tected by FSP and the data of the received frame is written to the corresponding
receiving bu�er.

77

Table 1. CPU Time/State Space/Memory Usage in checking SR1

Query CPU Time States Explored Memory Usage

q1 1.8 sec. 343,821 27.5 MB

q2 14.2 sec. 1,121,950 107.3 MB

q3 14.5 sec. 1,118,872 112.1 MB

q4 4.8 sec. 470,860 106.0 MB

q5 7.2 sec. 470,860 106.7 MB

5 Evaluation of the Framework

In this section, the framework is evaluated by checking some properties on two
example applications [18]. Firstly, the sender/receiver example (SR1) demon-
strated in section 4.3 is used to verify core properties related to frame trans-
missions of FlexRay protocol to see whether the framework is built right on
the scope of frame transmissions. Then we introduce another sender/receiver
example (SR2) to illustrate possible usage of the framework for timing analysis.
Both examples are checked by using UPPAAL 4.1.14 on a machine of following
speci�cations: Windows 8 with Intel i5 2.3GHz and 8GM RAM. Memory usage
and CPU times in checking SR1 are listed in Table 1 6.

Is the framework built right? For SR1, we give and check some proper-
ties/queries based on the speci�cations of the FlexRay protocol relating to frame
transmissions. The results give the hints for evaluating whether FlexRay model

of the framework is built right, i.e. follows the speci�cations of the FlexRay
protocol in the scope of normal frame transmissions. Recall that the designs
of the tasks in SR1 make it reasonable for us to keep the focus on only frame
transmissions in FlexRay model. The checked queries are listed as follows:

q1. A<> forall (i:int[1,10]) (CHI_Buffer_send[i].length>0);

q2. (CHI_Buffer_send[1].length>0) --> (CHI_Buffer_send[1].length==0);

q3. (CHI_Buffer_send[1].length>0) --> (CHI_Buffer_receive[1].length>0);

q4. A[] forall (i:int[1,10]) ((CHI_Buffer_receive[i].length>0)

imply (vSS.vSlotCounter==i));

q5. A[] forall (i:int[1,10]) forall (j:int[1,10])

(CHI_Buffer_receive[i].length>0 && CHI_Buffer_receive[j].length>0)

imply (j==i);

Queries q1, q2, q3 check basic functionalities considering the bu�ers in the
CHI. q1 says all bu�ers in the system can be �lled with data, which means the
tasks can successfully write messages to sending bu�ers. q2 says the data in a
sending bu�er will be erased/sent eventually. q3 says for a sending bu�er with
data, the corresponding receiving bu�er will be �lled, which means frames can
be correctly delivered by the CC. Since q1, q2, and q3 are all satis�ed7, we
can con�rm that the tasks do communicate through FlexRay model. That is,
frame transmissions are performed by FlexRay model as expected in the task
designs in Application model. Then we check queries q4 and q5 considering the

6 We used verifyta in command-line with -u option
7 For q2 and q3, all ten messages of indexes 1 to 10 are checked.

78

time of frame transmissions (slots). q4 says if a receiving bu�er has data, the
communication cycle is in the interval of the corresponding slot, which means
frame transmissions are occurring in the right slot (time interval)8. q5 says there
is only one frame being sent in any slot. From the result that q4 and q5 are both
satis�ed, we can con�rm that FlexRay model does follow the speci�cations of the
FlexRay protocol regarding normal frame transmissions. Therefore, we conclude
that we built the framework right under the scope of normal frame transmissions
of the FlexRay protocol.

How to check timing properties? One of the major characteristics of the
framework is the ability to describe behaviors with time constraints. Here we
introduce another sender/receiver example (SR2) shown in Fig. 7 [18]. In this
system, Sender sends a message periodically while Receiver receives a message
immediately when the receiving bu�er is detected having data. Note that Sender
checks periodically if the sending bu�er is �lled and only writes data to the bu�er
when the bu�er is empty. The major parameter settings are as follows:

int gCycleCounterMax=6; //max. number of cycle

int gNumberOfStaticSlots=3; //number of static segment slots

int gNumberOfMinislots=30; //number of dynamic segment minislots

int cSlotIDMax=6; //maximum number of slot ID

int gdNIT=2; //period of NIT (in macrotick)

int gdActionPointOffset=2; //static offset

int gdStaticSlot=10; // number of macroticks in a static slot

int gdMinislotActionPointOffset=2; //offset of minislot

int gdMinislot=5; // number of macroticks in a minislot

Though there is only one frame to be sent/received, the system is de�ned
to have six slots including three static slots. Also, the only frame is set to slot
1, i.e. the �rst static slot, and the length of the cycle of Sender is set to 100
macroticks.

To write property of response time of msg1, we built Observer to monitor
changes in the sending bu�er of msg1. Observer moves from the initial state to
state buffered once the sending bu�er is written by Sender. Once the send-
ing bu�er is cleaned by FlexRay model when the transmission starts, Observer
immediately moves to state sent and waits Receiver to send signal receive.
The signal receive indicates that the transmission is �nished and the receiving
bu�er is written with the data of the received frame. Note that Observer has two
clocks x and y where x starts counting at the time the sending bu�er is written,
and y starts counting at the time the sending bu�er is cleaned. Therefore, by
examining the value of clock x at state received of Observer, we can know the
response time (macrotick, MT) of msg1; by examining the value of clock y at
state received of Observer, we can know the frame transmission time of msg1.
Now we can write some queries about the response times of msg1.

q1[Y]. A[] (observer.received imply observer.y == 5)

q2[Y]. E<> (observer.received && observer.x == 6)

8 Note that Receiver receives the data as soon as a receiving bu�er is �lled.

79

x<=0 cycle_end
x<=cycle

x==0 x==cycle

x:=0wait_for_cycle

write_msg_to_CHI(msg1, 2, 5)

inital write_msg_to_CHI(msg1, 1, 5)

CHI_Buffer_send[msg1].length>0

CHI_Buffer_send[msg1].length==0

(a) Sender

wait_for_receiving

CHI_Buffer_receive[msg1].length>0

receive!

go?

clean_receive_buffer_CHI(vSS.vSlotCounter)

(b) Receiver

initial

receive?

buffered sent

received

y=0

go?

x=0, y=0

go?

x=0, y=0

CHI_Buffer_send[msg1].length>0 CHI_Buffer_send[msg1].length==0

(c) Observer

Fig. 7. Another sender/receiver example (SR2)

q3[N]. E<> (observer.received && observer.x < 6)

q4[Y]. E<> (observer.received && observer.x == 182)

q5[N]. E<> (observer.received && observer.x > 182)

Note that in each query, [Y] or [N] indicates the checking result of the query
as satis�ed or not satis�ed. The result of q1 shows that the frame transmission
time of msg1 is 5MT, which exactly matches the setting of the length of msg1.
The results of q2 and q3 show that the best case response time (BCRT) of msg1
is 6MT, which is the sum of the frame length (5MT) and the static slot o�set
(1MT). The results of q4 and q5 show that the best case response time (WCRT)
of msg1 is 182MT, which is the sum of the lengths of the static segment (30MT),
the dynamic segment (150MT) and the NIT (2MT).

Discussions In SR1, we focus on frame transmissions in FlexRay model and
checked some related properties. With the results, we conclude that the frame-
work is built right in the scope of normal frame transmissions of the FlexRay
protocol. With only a few properties checked, one may doubt that it is not su�-
cient to con�rm that FlexRay model of the framework conform to the speci�ca-
tions of the FlexRay protocol. For this issue, we argue that since we only focus
on normal frame transmissions of the FlexRay protocol, the checking results are
satis�able at current status of the framework. Furthermore, since the structure
of the framework follows the structure of the speci�cations of the FlexRay proto-
col, when we want to extend the functionalities of FlexRay model, current status
of FlexRay model can be a base to implement the extensions.

In SR2, the checking of the response times shows that the framework is
able to check timing properties with the help of Observer. This is a common

80

technique for checking complex properties since UPPAAL only support simple
timed computational tree logic (TCTL) formulas. Also, to decide the value of
BCET and WCET to be �lled in a query, currently we have to guess according
to the parameters of a system. This may result some trial and error, or we may
utilize some traditional timing analysis techniques.

For the feasibility of applying the framework in the industry, since in this
paper we only focus on building FlexRay model, the modeling of the tasks in
a system is left to developers. Therefore, developers have to be familiar with
the usage of UPPAAL. Also, it is necessary to have a methodology of modeling
tasks, which may be adopted from the experiences of the modeling on integrated
platforms. Another issue is the performance of the framework. From the results
shown in Table 1, the state space is quite large considering that the system
of SR1 is very simple. The performance issue would be a major problem when
applying the framework to industrial automotive system designs.

6 Conclusion and Future Work

In this paper, an UPPAAL framework for model checking automotive system
designs with FlexRay protocol is introduced and evaluated. The framework con-
sists of FlexRay model and application model: the former is built by abstractions
to the FlexRay protocol and can be reused for di�erent applications with proper
parameter settings represented by global variables in UPPAAL. To the best of
our knowledge, the framework is the �rst attempt for model checking automo-
tive system designs considering communication protocols. To evaluate the frame-
work, we demonstrated two simple systems and checked some queries/properties.
From the results, we conclude that the framework is built right in accordance
with normal frame transmissions of the FlexRay protocol and is able to check
timing properties.

In this paper, we showed that a reusable module on top of UPPAAL, i.e.
FlexRay model, could be realized for veri�cation of applications with FlexRay
protocol. We argue that only providing a general purpose model checker is not
su�cient for verifying practical systems. Additional descriptions and mecha-
nisms such as scheduling of tasks and emulation of hardware devices are usually
needed to precisely model and verify the behavior of practical systems. Further-
more, these additional mechanisms are usually common for systems belonging
to a speci�c application domain and are possible to be provided as reusable
frameworks and libraries. Therefore, integrating such frameworks and libraries
is crucial for promoting practical applications of model checkers in the industry.

Currently, the framework can only support scheduling analysis in systems
that an ECU has only one task, or developers have to build scheduler modules,
which is not easy. Therefore, we plan to add scheduler modules to support general
scheduling analysis. We also plan to conduct more experiments on practical
automotive systems to discover more usages and possible improvements of the
framework.

81

References

1. Altran Technologies: FlexRay Speci�cations Version 3.0.1 (2010)
2. Bel Mokadem, H., Berard, B., Gourcu�, V., De Smet, O., Roussel, J-M.: Veri�ca-

tion of a Timed Multitask System With UPPAAL. IEEE Trans. on Automation
Science and Engineering, 7(4), 921�932 (2010)

3. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a Tool
Suite for Automatic Veri�cation of Real-Time Systems. In: Hybrid Systems III,
LNCS, vol.1066, pp.232�243. (1996)

4. Bøgholm, T., Kragh-Hansen, H., Olsen, P., Thomsen, B., Larsen, K.G.: Model-
based Schedulability Analysis of Safety Critical Hard Teal-Time Java Programs.
In: Proceedings of the 6th international workshop on Java technologies for real-time
and embedded systems (JTRES'08). pp.106�114. (2008)

5. David, A., Rasmussen, J.I., Larsen, K.G., Skou, A.: Model-based Framework for
Schedulability Analysis Using Uppaal 4.1, pp.93�119. Computational Analysis,
Synthesis, and Design of Dynamic Systems. (2009)

6. Gerke, M., Ehlers, R., Finkbeiner, B., Peter, H.J.: Model checking the FlexRay
Physical Layer Protocol. In: Proceedings of the 15th international conference on
Formal methods for industrial critical systems (FMICS'10). pp.132�147. (2010)

7. Giusto, P., Ferrari, A., Lavagno, L., Brunel, J.Y., Fourgeau, E., Sangiovanni-
Vincentelli, A.: Automotive Virtual Integration Platforms: Why's, What's, and
How's. In: IEEE International Conference on Computer Design: VLSI in Comput-
ers and Processors. pp.370� 378. (2002)

8. Hagiescu, A., Bordoloi, U.D., Chakraborty, S., Sampath, P., Ganesan, P.V.V.,
Ramesh, S.: Performance Analysis of FlexRay-Based ECU Networks. In: (DAC'07).
pp.284�289. (2007)

9. Hessel, A., Larsen, K., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Test-
ing Real-Time Systems Using UPPAAL. In: Formal Methods and Testing, LNCS,
vol.4949, pp.77�117. (2008)

10. Hiraoka, T., Eto, S., Nishihara, O., Kumamoto, H.: Fault Tolerant Design for X-
By-Wire Vehicle. In: SICE'04 Annual Conference. vol.3, pp.1940�1945 vol.3 (2004)

11. Jung, K.H., Song, M.G., ik Lee, D., Jin, S.H.: Priority-Based Scheduling of Dy-
namic Segment in FlexRay Network. In: International Conference on Control, Au-
tomation and Systems (ICCAS'08). pp.1036�1041 (2008)

12. Malinský, J., Novák, J.: Veri�cation of FlexRay Start-Up Mechanism by Timed
Automata. Metrology and Measurement Systems 17(3), 461�480 (2010)

13. Navet, N., Song, Y., Simonot-Lion, F., Wilwert, C.: Trends in Automotive Com-
munication Systems. Proceedings of the IEEE 93(6), 1204 �1223 (2005)

14. Qtronic GmbH, Germany: Virtual Integration and Test of Automotive ECUs. In:
Automotive Testing Expo North America, ASAM Open Technology Forum (2011)

15. Sangiovanni-Vincentelli, A.: Electronic-System Design in the Automobile Industry.
IEEE Micro 23(3), 8�18 (2003)

16. Tanasa, B., Bordoloi, U., Kosuch, S., Eles, P., Peng, Z.: Schedulability Analysis
for the Dynamic Segment of FlexRay: A Generalization to Slot Multiplexing. In:
IEEE 18th Real-Time and Embedded Technology and Applications Symposium
(RTAS'12). pp.185�194 (2012)

17. Zeng, H., Ghosal, A., Di Natale, M.: Timing Analysis and Optimization of FlexRay
Dynamic Segment. In: IEEE 10th International Conference on Computer and In-
formation Technology (CIT'10). pp.1932�1939 (2010)

18. UPPAAL models used in this paper: https://github.com/h-lin/FTSCS2013

82

Early Analysis of Soft Error Effects for
Aerospace Applications Using Probabilistic

Model Checking

Khaza Anuarul Hoque1, Otmane Ait Mohamed1, Yvon Savaria2 and Claude
Thibeault3

1 Concordia University, Montreal, Canada
{k hoque,ait}@ece.concordia.ca

2 Polytechnique Montréal, Montreal, Canada
yvon.savaria@polymtl.ca

3 École de Technologie Supérieure, Montreal, Canada
claude.thibeault@etsmtl.ca

Abstract. SRAM-based FPGAs are increasingly popular in the aero-
space industry for their field programmability and low cost. However,
they suffer from cosmic radiation induced Single Event Upsets (SEUs),
commonly known as soft errors. In safety-critical applications, the de-
pendability of the design is a prime concern since failures may have
catastrophic consequences. An early analysis of dependability and per-
formance of such safety-critical applications can reduce the design effort
and increases the confidence in design. This paper introduces a novel
methodology based on probabilistic model checking, to analyze the de-
pendability and performability properties of safety-critical systems for
early design decisions. Starting from a high-level description of a model, a
Markov reward model is constructed from the Control Data Flow Graph
(CDFG) of the system and a component characterization library target-
ing FPGAs. Such an exhaustive model captures all the failures and re-
pairs possible in the system within the radiation environment. We present
a case study on a benchmark circuit to illustrate the applicability of the
proposed approach to demonstrate that a wide range of useful depend-
ability and performability properties can be analyzed using our proposed
methodology.

1 Introduction

Dependability and performability are major concerns in safety-critical and mission-
critical applications common in the aerospace industry. Electronic components
are exposed to more intense cosmic rays when flying at high altitude. It has
been reported that long-haul aircrafts flying at airplane altitudes experience a
neutron-flux roughly 500 times higher than that at ground level in the worst case
[13]. For space missions the rate is much worse. Due to field programmability,
absence of non-recurring engineering costs, low manufacturing costs and other
advantages, SRAM-based FPGAs are increasingly attractive. Unfortunately, a

83

2 K. A. Hoque, O. A. Mohamed, Y. Savaria and C. Thibeault

great disadvantage of these devices is their sensitivity to radiation effects that
can cause bit flips in memory elements and ionisation induced transient faults
in semiconductors, commonly known as soft errors and soft faults [21, 1]. There-
fore, in aerospace industry, the possibility of cosmic radiation induced soft error
grows dramatically at higher altitudes. However, an early analysis of depend-
ability and performance impacts of such errors and faults on the design provides
opportunities for the designer to develop more reliable and efficient designs and
may reduce the overall cost associated with the design effort. Our work aims at
achieving these goals.

This paper proposes a means by which formal verification methods can be
applied at early design stages to analyze the dependability and performability of
reconfigurable systems. In particular, the focus is on probabilistic model checking
[8]. Probabilistic model checking is used to verify the systems whose behavior is
stochastic in nature. It is mainly based on the construction and analysis of
a probabilistic model, typically a Markov chain or a Markov process. These
models are constructed in an exhaustive fashion. Indeed, the models explore all
possible states that might occur in a system. Probabilistic model checking can
be used to analyze a wide range of dependability and performability properties.
In contrast, in discrete-event simulations, approximate results are generated by
averaging results from large number of random samples. Probabilistic model
checking applies numerical computations to provide exact and accurate results.

To analyze a design at high level, we start from its Control Data Flow Graph
(CDFG) [17] representation, obtained from a high-level description of the design
expressed using a language such as C++. The possible implementation options
of the CDFG, with different sets of available components and their possible
failures, fault recovery and repairs in the radiation environment are then modeled
with the PRISM modeling language [24]. The failure rate of the components
are obtained from the first-order worst-case component characterization library.
Since the FPGA repair mechanism known as scrubbing [5] is used in conjunction
with another form of mitigation technique such as TMR [6] to increase the
reliability, we demonstrate in this paper that rescheduling [4, 16] could be a good
alternative candidate in some cases compared to a redundancy-based solution.
In the proposed methodology, we show how to use the PRISM model checker
tool to model and evaluate dependability, performability and area trade-offs
between available design options. Current work in this area either separate the
dependability analysis from performance/area analysis, or do not analyze such
safety-critical applications at early design stage. Commercial tools for reliability
analysis such as Isograph [15] cannot be used for performance evaluation of
such systems as they do not support Markov reward models [27]. Since the
probabilistic model checker PRISM allows reward modeling, our work overcomes
this limitation. The motivation of the work, the application area, the fault model,
considered fault tolerance techniques and the use of probabilistic model checking
for system analysis, makes our work unique.

The remainder of the paper is organized as follows. Section 2 reviews moti-
vation and related works. Section 3 describes the background about soft error

84

Early Soft Error Analysis for Aerospace using Probabilistic Model Checking 3

effects, soft error mitigation techniques and probabilistic model checking. The
proposed methodology and modeling details are discussed in section 4, and in
section 5, we present a case study using our proposed methodology. Section 6
concludes the paper with future research directions.

2 Motivation and Related Work

Consider the CDFG of a synchronous dataflow DSP application shown in Figure
1. Based on data dependencies, this application can be carried out in a mini-
mum of three control steps using the CDFG-1 shown in Figure 2, with two adders
and two multipliers. Such implementation provides a throughput of 1/3 = 0.33.
Another alternative consists of implementing the application with only one mul-
tiplier and two adders but in four control steps, as shown by CDFG-2 in Figure
2. In that case the throughput is 0.25. Based on the priority of throughput or
area metric, the appropriate CDFG is selected.

+1 -2

*3

*5

+4

*6

Fig. 1: Sample CDFG

However, inclusion of a reliability metric based on a fault recovery mecha-
nism can make the case more complex and difficult to evaluate. When a resource
fails (due to a configuration bit flip), an alternative schedule can be derived to
continue the system operation using the remaining resources, most likely at a
lower throughput. For example, to maximize the throughput, CDFG-1 is imple-
mented. For a single component failure, e.g. a multiplier, the application can
be rescheduled to implement CDFG-2 with lower throughput. Such fault toler-
ance approach was introduced in [4, 12, 16] for fault-secure microarchitectures
and multiprocessors. For FPGA-based designs, such a fault recovery technique
can be adopted as well and we explore the dependability, area and performance
trade-offs for such systems. We must mention that the controller for rescheduling
the operations is assumed to be fault-free. This controller can be implemented
in a separate chip with proper fault-tolerance mechanisms. Considering the ex-
ample again, we observe that, if another multiplier fails, the CDFG cannot be
rescheduled and the system fails to continue its operation. For FPGA-based
safety-critical applications, systematic system failure at first occurrence of a
soft-error is not acceptable. Scrubbing with partial reconfiguration capability [5]
can repair bit-flips in the configuration memory without disrupting system op-
erations. Scrubbing can be done at a specified rate meaning that there might
be a period of time between the moment the upset occurs and the moment
when it is repaired. That is why another form of mitigation is required, such
as a redundancy-based solution [6]. In this work, we use probabilistic model
checking to evaluate the dependability and performability vs area trade-offs and

85

4 K. A. Hoque, O. A. Mohamed, Y. Savaria and C. Thibeault

demonstrate that in some cases, a redundancy-based solution might not be the
best choice as one may expect. Alternatively, for those cases, rescheduling in
conjunction with scrubbing can be a good option.

+1 -2

*3

*5

+4

*6

+1 -2

*3

*4 +5

*6

CDFG-1 CDFG-2

Fig. 2: CDFGs scheduled over available resources

High-level synthesis algorithms such as forced-directed list scheduling [23]
can generate different CDFGs depending on components availability. Switching
to another CDFG allows recovering from a failure while a system can continue
its operation, possibly with a lower throughput. For many years, fault tolerance
techniques and reliability analysis of complex systems have been active research
area both in academia and industry. In [29], the authors proposed a reliability-
centric high-level synthesis approach to address soft errors. Their framework
uses reliability characterization to select the most reliable implementation for
each operation fulfilling latency and area constraints. In addition, researchers
dedicated lots of efforts in modeling the behavior of gracefully degradable large-
scale systems using continuous-time Markov reward models [3, 14]. In [26], a case
study is presented to measure the performance of a multiprocessor system using a
continuous-time Markov reward model. An approach for analyzing performance,
area and reliability using a Markov reward model is presented in [19]. The au-
thors used transistor lifetimes to model the reliability and performance, hence
the model is composed of non-repairable modules. Use of a non-formal com-
mercial tool makes their approach quite rigid in terms of analysis. Moreover, in
their proposed approach, the reward calculation is manual, as the traditional
commercial tools for reliability analysis do not support reward modeling.

Even though our model has similarities to performance analysis, our approach
is more flexible because we use probabilistic model checking. Our work focuses
on a different fault model: cosmic radiation induced configuration bit-flips in
FPGAs. Since scrubbing is possible in FPGA designs, we also add repair to our
Markov reward model. In consideration of the failure type, repair capability, use
of a characterization library to model the system, the application of our work and
our methodology is different from and novel when compared to all the related
works described above. To our knowledge, this is the first attempt to analyze the
dependability and performance to area trade-offs for such safety-critical systems
at early design stage using probabilistic model checking.

86

Early Soft Error Analysis for Aerospace using Probabilistic Model Checking 5

3 Background

3.1 Soft Errors

In SRAM-based FPGAs, the configuration bitstream determines the routing
and functionality of the design. However, a change in the value of one of the
SRAM cells can potentially modify the functionality of the design and can lead
to catastrophic consequences. The major reason for such inadvertent bit flips
in high-altitude is soft errors caused by cosmic radiation. When these particles
impact a silicon substrate, they result in the generation of excess carriers, which
when deposited on the internal capacitances of a circuit node can result in an
upset to the data value stored. The lowering of supply voltages and nodal ca-
pacitances with recent technologies have increased the possibility of observing
bit flips. Due to this increasing concern, there are several mitigation techniques
proposed for tackling the soft error problem.

A mainstream SEU repair technique in SRAM-based FPGAs is configura-
tion scrubbing [11]. Scrubbing refers to the periodic readback of the FPGA’s
configuration memory, comparing it to a known good copy, and writing back
any corrections required. By periodically scrubbing a device, maximum limits
may be placed on the period of time that a configuration error can be present
in a device. A variation to improve scrubbing is known as partial reconfiguration
[5]. This is beneficial as it allows a system to repair bit-flips in the configuration
memory without disrupting its operations. Configuration scrubbing prevents the
build-up of multiple configuration faults. Although scrubbing ensures that the
configuration bitstream can remain relatively free of errors, over the long run,
there is a period of time between the moment an upset occurs and the moment
when it is repaired in which the FPGA configuration is incorrect. Thus the de-
sign may not function correctly during that time. To completely mitigate the
errors caused by SEUs, scrubbing is used in conjunction with another form of
mitigation that masks the faults in the bitstream.

A scrub rate describes how often a scrub cycle should occur. It is denoted by
either a unit of time between scrubs, or a percentage (scrub cycle time divided
by the time between scrubs). There are direct relationships between scrubbing
rate, device size, device reliability and device safety, hence the scrub rate should
be determined by the expected upset rate of the device for the given application.

3.2 Probabilistic Model Checking

Model checking [8] is a well established formal verification technique to verify
the correctness of finite-state systems. Given a formal model of the system to
be verified in terms of labelled state transitions and the properties to be verified
in terms of temporal logic, the model checking algorithm exhaustively and au-
tomatically explores all the possible states in a system to verify if the property
is satisfiable or not. If not, a counterexample is generated. Probabilistic model
checking deals with systems that exhibit stochastic behaviour, such as fault-
tolerant systems. Probabilistic model checking is based on the construction and

87

6 K. A. Hoque, O. A. Mohamed, Y. Savaria and C. Thibeault

analysis of a probabilistic model of the system, typically a Markov chain. In this
paper, we focus on the continuous-time Markov chains (CTMCs) and Markov
reward models [27], widely used for reliability and performance analysis.

A CTMC comprises a set of states S and a transition rate matrix R : S×S →
R≥0. The rate R(s, s′) defines the delay before which a transition between states
s and s′ takes place. If R(s, s′) 6= 0 then the probability that a transition between

the states s and s′ might take place within time t can be defined as 1−e−R(s,s′)×t.
No transitions will take place if R(s, s′) = 0. Exponentially distributed delays
are suitable for modelling component lifetimes and inter-arrival times.

In the model-checking approach to performance and dependability analysis,
a model of the system under consideration is required together with a desired
property or performance/dependability measure. In case of stochastic modelling,
such models are typically CTMCs, while properties are usually expressed in some
form of extended temporal logic such as Continuous Stochastic Logic (CSL) [2],
a stochastic variant of the well-known Computational Tree Logic (CTL) [8]. Be-
low are a number of illustrative examples with their natural language translation:

1. P≥0.98[♦ complete] - “The probability of the system eventually completing
its execution successfully is at least 0.98”.

2. shutdown ⇒ P≥0.95[¬ fail U≤200 up] - “Once a shutdown has occurred,
with probability 0.95 or greater, the system will successfully recover within 200
hours and without any further failures occurring”.

Additional properties can be specified by adding the notion of rewards. Each
state (and/or transition) of the model is assigned a real-valued reward, allowing
queries such as:

1. R = [♦ success] - “What is the expected reward accumulated before the
system successfully terminates?”

Rewards can be used to specify a wide range of measures of interest, for exam-
ple, the number of correctly delivered packets or the time that the system is
operational. Of course, conversely, the rewards can be considered as costs, such
as power consumption, expected number of failures, etc.

4 Proposed Methodology

In Figure 3, we present the proposed methodology, which reuses some elements
from a methodology proposed in [28], namely the CDFG extraction and the con-
cept of using a characterization library (which was created with a different set
of tools). We start from the dataflow graph of the application. Different tools
such as GAUT [9], SUIF [10] etc. could be used to extract the dataflow graph
from a high-level design description expressed using a language such as C++.
As mentioned earlier, a CDFG can be implemented with different component

88

Early Soft Error Analysis for Aerospace using Probabilistic Model Checking 7

PRISM Model

PRISM MC

Characterization

Library

Results

Properties

Dataflow Graph

Configuration

CTMC

Fig. 3: Proposed methodology

allocations (design options). We will refer to the term design options as con-
figurations in the rest of the paper. Upon a failure, if possible with available
resources, the CDFG is rescheduled for fault recovery and the system continues
its operation -that is reflected in the CTMC as the next states. For rescheduling
the CDFG with available components, a high-level synthesis algorithm, such as
forced-directed list scheduling [23] can be used. To analyze each configuration, we
model them with the PRISM modeling language. Such a model is described as
a number of modules, each of which corresponds to a component of the system.
Each module has a set of finite-ranged variables representing different types of
resources. The domain of the variables represent the number of available com-
ponents of a specific resource. The whole model is constructed as the parallel
composition of these modules. The behaviour of an individual module is speci-
fied by a set of guarded commands. For a CTMC, as is the case here, it can be
represented in the following form:

[] <guard> → <rate> : <action> ;

The guard is a predicate over the variables of all the modules in the model. The
update comprises of rate and action. A rate is an expression which evaluates to
a positive real number. The term action describes a transition of the module in
terms of how its variables should be updated. The interpretation of the command
is that if the guard is satisfied, then the module can make the corresponding
transition with that associated rate. A very simple command for a module with
only one variable z might be:

[] <z = 0> → 7.5 : <z’ = z + 1> ;

89

8 K. A. Hoque, O. A. Mohamed, Y. Savaria and C. Thibeault

which states that, if z is equal to 0, then it will be incremented by one and
this action occurs with rate 7.5. For another example, consider an application
that requires 2 adders and 2 multipliers and such a configuration in the PRISM
modeling language can be described as follows:

module adder

a : [0.. num_A] init num_A;

[] (a > 0) -> a*lambda_A : (a’ = a - 1);

[] (a < num_A) -> miu : (a’ = num_A);

endmodule

module mult

m : [0.. num_M] init num_M;

[] (m > 0) -> m*lambda_M : (m’ = m - 1);

[] (m < num_M) -> miu : (m’ = num_M);

endmodule

In the PRISM code above, num A and num M represent the number of adders and multi-
pliers available in the initial state of the configuration. The lambda A and the lambda M

variable represents the associated failure rates of the adders and multipliers whereas
miu represents the repair rate. Each repair transition (scrub) leads back to the initial
state reflecting the scenario that the configuration bit flips have been repaired. The
value of lambda A and lambda M is obtained from a component characterization library,
that will be explained later in the paper. PRISM then constructs, from this, the cor-
responding probabilistic model, in this case a CTMC. The resulting CTMC for this
configuration is shown in Figure 4. PRISM also computes the set of all states which
are reachable from the initial state and identifies any deadlock states (i.e. reachable
states with no outgoing transitions). PRISM then parses one or more temporal logic
properties (e.g. in CSL) and performs model checking, determining whether the model
satisfies each property.

4.1 Markov Model for Dependability

CTMC models are very commonly used for reliability and dependability modeling. To
analyze each configuration, a separate CTMC is built with the help of the PRISM
tool and a wide range of dependability properties are verified. For the FIR application
in Figure 5, at a minimum, an adder and a multiplier pair is required for successful
operation, hence any state that does not fulfill the minimum resource availability, is
labeled as a failed state. At the end, the state labeled as all fail represents a state where
all the components in the system have failed due to soft errors one-by-one. The initial
state of the configuration has the maximum throughput and all the components are
functional. The edges between the states represent transition rates. The assumptions
for our model are defined as follows:

Assumption 1 : The time-to failure for a component due to a configuration bit flip
is exponentially distributed. Exponential distribution is commonly used to model the
reliability of systems where the failure rate is constant. The scrubbing behavior is

90

Early Soft Error Analysis for Aerospace using Probabilistic Model Checking 9

2A, 2M

1A, 2M

2A, 1M

2λA

2λM

1A, 1M
All Fail

(failed)

λM

2λM

2λA

µ

µ

2M

(failed)

1M

(failed)

2A

(failed)

1A

(failed)
λM 2λA

λA 2λM

λM

λA

µ

µ

µ

µ

µ

µ

 λA

Fig. 4: Sample Markov Model

assumed to follow Saleh’s probabilistic model [25], e.g. scrubbing interval is distributed
exponentially with a rate 1/µ, where µ represents the scrub rate.

Assumption 2 : Only one component can fail at a time due to a soft error. This as-
sumption is made to ensure the complexity in the Markov model is managable.

Assumption 3 : Cold spare components are used to provide redundancy and are actived
only when a same type of component fails. The cold spare components are only error
prone to cosmic radiation when they are active.

Assumption 4 : The reconfiguration and rescheduling times (i.e. the time taken for
the system to reschedule when a component fails and the time taken for repair via
partial reconfiguration) are extremely small compared to the times between failures
and repairs. The time required for rescheduling is at most few clock cycles and the
time required for scrubbing is only a few seconds, which is significantly smaller than
the failure and repair rate.

Assumption 5 : All the states in the CTMC model can be classified into three types:
operational, -where all the component are functional and the system has the highest
throughput; degraded, -where at least one of the components is faulty; and failed,
-where the number of remaining non-faulty components is not sufficient to perform
successful operation and hence has a throughput of 0. In PRISM, a formula can be
used to classify such states as follows:

formula operational = (a = num A) & (m = num M) ;

4.2 Markov Reward Modeling

Markov chains can be augmented with rewards to specify additional qualitative mea-
sures, known as a Markov Reward Model (MRM). In a Markov reward model, a reward
rate function or reward structure r(Xi) where X → R (R is a set of real numbers) is
associated with every state Xi such that r represents the performance of the system
when in state Xi. The transient performability is defined as the expected value of a
random variable defined in terms of a reward structure :

E[X(t)] =
∑

Xi∈X
PXi(t) ∗ r(Xi)

91

10 K. A. Hoque, O. A. Mohamed, Y. Savaria and C. Thibeault

A steady-state accumulated mean reward is obtained by integrating this function from
start to an convergent time beyond which rewards are invariant. For performance anal-
ysis, we use the throughput metric, hence each state in the MRM is augmented with
associated throughput (in a non-pipelined design, throughput is the inverse of latency).
The throughput reward at each state in the CTMC is obtained using the forced-directed
list scheduling algorithm and all the failed states are augmented with a throughput re-
ward of zero. In our MRM model, the area that is required, to implement the design on
the FPGA, is assumed to be invariant between the states for a specific configuration.
The reason is, once the system is implemented on FPGA, the area is fixed and if a fault
occurs, then the system will be rescheduled. So only the control signals will change, not
the components. For overall reward calculation e.g. to evaluate the throughput-area
trade-offs for a configuration, we use the following equation:

Overall reward = (1/A) ∗ E[X]

In the above equation, A represent the area of the design and E[X] represents the
expected throughput. This equation is similar to [20] , however instead of calculating
the reward up to a specified time-step, we use the notion of steady-state throughput.
Such modeling can be considered as a direct optimization of throughput, area and
reliability. Rewards can be weighted based on designer’s requirements. In the case
study, the rewards are set to equal weight.

4.3 Characterization library

The reliability of a particular device can be calculated by multiplying the estimated
nominal SEU failure rate that is expressed in failure-in-time per megabyte (FIT/Mb)
and the number of critical bits. A bit that is important for the functionality of a
design can be categorized as a critical bit. For the analysis of critical bit, we follow
the procedure from [7]. The components to be analyzed are implemented on Virtex-5
xc5vlx50t device. According to Rosetta experiment [21] and the recent device reliability
report [30], a Virtex-5 device has a nominal SEU failure rate of 165 FIT/Mb.

The above failure rate estimation was done for atmospheric environment. At places
with high elevation above the sea, the SEU rates can be three or four times higher
than at the sea-level. Long-haul aircrafts flying at altitudes near 40,000 feet along flight
paths above 60 ◦C latitude experience the greatest neutron flux of all flights, roughly
500 times that of a ground-based observer in New York City [13]. However,results
from the Rosetta experiment [21] for different altitude and latitude shows a worst-case
derating factor of 561.70, and hence for commercial avionics applications the worst-case
derating factor should be used.

Table 1: Characterization Library

Component No. of No. of MTBF
LUTs essential bits (years)

Wallace Tree Multiplier 722 133503 9.22
Booth Multiplier 650 130781 9.41

Brant-Kung adder 120 29675 41
Kogge-Stone Adder 183 41499 30

92

Early Soft Error Analysis for Aerospace using Probabilistic Model Checking 11

+1 +2

*3 +5*4

+6 +8*7

+9 +11*10

+12 +14*13

+15 +17*16

+18 +20*19

+21

+23

*22

Fig. 5: FIR filter

In order to build a characterization library for the first-order estimate of soft error
effects, we use the bitgen feature of Xilinx ISE tool to identify the essential bits, also
known as potentially critical bits. It is well known that the number of critical bits is less
than the number of potentially critical bits. More accurate SEU susceptibility analysis
can be performed using the fault injection techniques [22, 18], however, for first-order
worst-case estimation, it is a valid assumption that all the essential bits are considered
as critical bits. This is important to mention that we use the characterization library to
obtain the failure rate of the components for the CTMC model and the methodology
is generic enough to be used with a different characterization library with more precise
and accurate data, without any major changes.

Table 1 presents the first-order worst-case estimate of component failures due to
soft errors. We characterize different adder and multiplier components, namely 32-bit
Brent-kung adder, 32-bit Kogge-stone adder, 32-bit Wallace-tree multiplier and 32-bit
Booth multiplier. The Xilinx Synthesis Technology (XST) tool is used to synthesize
the components from their HDL codes and the number of required LUTs to implement
them is also obtained. We observe that a 32-bit Wallace-tree multiplier has about 0.134
million bits that are sensitive to SEUs. So this multiplier has a worst-case MTBF of
9.22 years for avionic applications.

5 Case Study

To illustrate the applicability of the proposed methodology for early design decision,
this section presents a case study from a high-level synthesis benchmark. Figure 5
shows the CDFG for a 16-point FIR Filter [16]. For the experiments, we consider the
32-bit Kogge-stone adders and 32-bit Wallace tree multipliers as available components
from the characterization library. To achieve a schedule with minimum number of
control steps, the minimum allocation is two adders and two multipliers for the FIR
filter application. At a minimum a pair of one adder and one multiplier is required

93

12 K. A. Hoque, O. A. Mohamed, Y. Savaria and C. Thibeault

for successful operation. The first part of the case study presents the dependability
analysis on different configurations. The later part of the case study focuses on the
performance-area trade-off analysis using overall reward calculation.

Table 2: Model construction statistics

Configuration No. of states No. of transitions Time (s)

2A 2M 9 24 0.002
2A 3M 12 34 0.002
3A 2M 12 34 0.002
3A 3M 16 48 0.002

Table 2 shows the statistics and model construction time in PRISM for four differ-
ent configurations. The first configuration consists of two adders and two multipliers
with no redundancy. The second and third configuration consists of one spare multiplier
and one spare adder respectively used as redundant components (coldspare). Config-
uration 4 is equipped with full component-level redundancy, with a spare of each type
of components. All the four configurations have approximately the same model gener-
ation time around 0.002 seconds. Configuration 4 has maximum number of states and
and maximum number of transitions in the generated Markov model.

Table 3: Configurations vs classes of states

Configurations Operational Degraded Failed
(days) (days) (days)

2A 2M 3212.16 419.81 18.02
2A 3M 3212.16 434.64 3.20
3A 2M 3212.16 421.45 16.39
3A 3M 3212.16 436.28 1.55

Probabilistic model checking allows us to reason about the probability of occurrence
of an event or of reaching a state within a specific time period, or at any point of
time in the lifetime of the system. Such measures can be formalized using CSL as P

= ? (F[t1, t2] "operational"), which must be read as follows: “the probability that
the system is operational within the specified time-bound where [t1, t2] ∈ R”. In table
3, we analyze the number of days the design spends in different classes of states for
a mission time of 10 years with a scrub rate of 6 months. The first column of the
table shows the different configurations for evaluation. The second, third and fourth
column presents the number of days the design spends in different classes of states.
All the configurations spend approximately similar number of days in operational state
(rounded to 2 decimal points). Configuration 1 spends around 18 days in failed state.
Interestingly, we observe that adding an extra adder as spare does not help much
whereas adding an extra multiplier as spare significantly reduces the number days
spent in failed state. In configuration 4, the added spares for both adder and multiplier
provide the best result in terms of dependability. This is obvious but will cost more
area on the FPGA. Configuration 1 spends the least number of days in degraded state
and configuration 4 spends the highest number of days in degraded state. For many
safety-critical applications, low performance for a period of time is acceptable. For
such systems the number of days spent in failed state is a major concern and hence,
configuration 4 and configuration 2 are the two best candidates.

94

Early Soft Error Analysis for Aerospace using Probabilistic Model Checking 13

Fig. 6: Failure Probability vs Scrub rate (days)

Table 4: Scrub rate vs Classes of states

Scrub rate Operational Degraded Failed
(months) (days) (days) (days)

1 3567.06 82.87 0.06
4 3343.21 305.49 1.30
7 3151.41 494.09 4.49
10 2985.99 654.35 9.65

Choice of scrub rate affects the dependability of the system. Table 4 shows the
effects of different scrub rates on configuration 2 for a mission time of 10 years. From
the experimental results, we observe that the increase in the scrub rate increases the
number of days spent in failed and degraded states. Thus, it decreases the number
of days spent in operational state. For a scrub rate of 10 months, the system spends
around 10 days in failed state whereas for a scrub rate of 4 months, the design spends
only around 1 days in failed state. For a scrub rate of 1 month, the system spend
only around 1.5 hours in failed state. Such an analysis can help designers to choose an
effective scrub rate best suited for the application.

In figure 6 and table 5, we compare the four available configurations with respect
to different scrub rates to calculate their failure probability for the same mission time.
The experimental results show that for configuration 1, the failure probability varies
from 0.020 to 0.145. Configuration 2 has a lower failure probability than configuration
3 for all the scrub rates. The failure probability of configuration 4 for all different scrub
rates shows the best result with associated extra area overhead.

Table 5: Scrub rate vs configurations

Scrub rate (Months) 2A 2M 2A 3M 3A 2M 3A 3M

1 0.020 0.002 0.019 3.36E-4
4 0.071 0.011 0.066 0.004
7 0.111 0.022 0.104 0.011
10 0.145 0.035 0.135 0.020

Steady state analysis of a design is useful to evaluate its dependability in the long-
run. The steady-state properties can be formalized using CSL as S = ? [fail], which
must be read as follows: “the long-run non-availability of the system”, i.e. the steady-

95

14 K. A. Hoque, O. A. Mohamed, Y. Savaria and C. Thibeault

state probability that the system is in failed state. The results of steady-state analysis
is presented in table 6 for a scrub rate of 4 months. From the results, we observe that
configuration 2 is really an attractive alternative to configuration 4. On the other hand,
configuration 1 and configuration 3 offer similar results (rounded to 2 decimal points)
over the long-run.

Table 6: Steady state analysis

Class 2A 2M 2A 3M 3A 2M 3A 3M

Fail 0.002 3.86E-4 0.002 1.58E-4
Degraded 0.084 0.086 0.084 0.086

Operational 0.913 0.913 0.913 0.913

For throughput-area trade-off analysis, Table 7 shows the long-run overall reward
calculation for the configurations with a scrub rate of 4 months. The rewards are setup
so that the area and expected throughput have equal weights. For every configuration,
the maximum throughput is used to normalize the throughput for other states in the
Markov reward model. Similarly, the maximum area is used to normalize the other area
values among different configurations. The normalized long-run expected throughput
for each configuration is shown in column 2. Column 3 shows the area of each config-
uration and their normalized value is shown in column 4. Column 5 shows the overall
area-throughput reward for each configuration. The reward for each configuration is
calculated by multiplying the value of column 2 with the reciprocal of the normalized
area. Based on the equal reward weighting, configuration 1, which has no redundancy
(spare components), shows the best throughput-area reward. This indicates that the
extra reliability provided by the redundancy is not always useful to suppress the ex-
tra area overhead. However, rescheduling with scrubbing is good enough to serve as a
fault recovery and repair mechanism in such cases. Another important observation is
that adding a spare multiplier significantly improves the throughput-area reward, much
more than adding a spare adder. It clearly show, how the inclusion of throughput-area
metrics can influence design decisions toward solutions that differs from those result-
ing from an analysis based on a dependability metric alone, as in Table 3. Such an
analysis, using the proposed methodology, can be very useful at early design stages for
designers of safety-critical applications concerned with dependability, performance and
area constraints.

Table 7: Overall reward calculation

Configurations Expected Area Normalized Overall
Throughput Area Reward

2A 2M 0.983 1710 0.667 1.46
2A 3M 0.991 2432 0.948 1.04
3A 2M 0.990 1834 0.715 1.39
3A 3M 0.999 2565 1.000 0.99

6 Conclusion

This paper illustrated how probabilistic model checking, a formal verification technique
which has already been applied to a wide range of domains, can be used to analyze

96

Early Soft Error Analysis for Aerospace using Probabilistic Model Checking 15

designs at early stage for avionic applications. The design options are modeled using a
Markov reward model, that captures the possible failures, recoveries and repairs possi-
ble in high-altitude radiation environment. Afterwards, a wide range of properties are
verified to evaluate the design options, in terms of throughput, area and dependability.
Such analysis is useful to reduce the overall design cost and effort. A FIR filter case
study demonstrated how the proposed methodology can be applied to drive the design
process. Future works include automation of the process to generate the PRISM code
for a given configuration and to analyze designs in the presence of other kinds of faults
such as Single-Event Functional Interrupts (SEFI).

7 Acknowledgments

This research work is a part of the AVIO-403 project financially supported by the
Consortium for Research and Innovation in Aerospace in Quebec (CRIAQ), Fonds de
Recherche du Québec - Nature et Technologies (FRQNT) and the Natural Sciences
and Engineering Research Council of Canada (NSERC). The authors would also like
to thank Bombardier Aerospace, MDA Space Missions and the Canadian Space Agency
(CSA) for their technical guidance and financial support.

References

1. P. Adell, G. Allen, G. Swift, and S. McClure. Assessing and mitigating radiation
effects in Xilinx SRAM FPGAs. In Radiation and Its Effects on Components and
Systems (RADECS), 2008 European Conference on, pages 418–424, 2008.

2. C. Baier, J-P. Katoen, and H. Hermanns. Approximate symbolic model checking
of continuous-time markov chains (extended abstract), 1999.

3. M. D. Beaudry. Performance-related reliability measures for computing systems.
Computers, IEEE Transactions on, C-27(6):540–547, 1978.

4. B. R. Borgerson and R. F. Freitas. A reliability model for gracefully degrading
and standby-sparing systems. IEEE Trans. Comput., 24(5):517–525, May 1975.

5. A. Salazar C. Carmichael, M. Caffrey. Correcting Single-Event Upsets through
Virtex Partial Configuration (XAPP216 v1.0), Xilinx corporation, 2010.

6. C. Carmichael. Triple module redundancy design techniques for virtex FPGAs
(XAPP197 v1.0.1), Xilinx corporation, 2006.

7. K. Chapman. Virtex-5 SEU critical bit information: Extending the cabability of
the virtex-5 SEU controller, Xilinx corporation, 2010.

8. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8:244–263, 1986.

9. P. Coussy, C. Chavet, P. Bomel, D. Heller, E. Senn, and E. Martin. GAUT: A high-
level synthesis tool for dsp applications. In P. Coussy and A. Morawiec, editors,
High-Level Synthesis, pages 147–169. Springer Netherlands, 2008.

10. G. Aigner et al. The SUIF program representation. http://suif.stanford.edu/

suif/suif2/index.html, January 2010.

11. J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb. FPGA partial reconfiguration
via configuration scrubbing. In Field Programmable Logic and Applications, 2009.
FPL 2009. International Conference on, pages 99–104, 2009.

97

16 K. A. Hoque, O. A. Mohamed, Y. Savaria and C. Thibeault

12. I. Hong, M. Potkonjak, and R Karri. Heterogeneous BISR-approach using system
level synthesis flexibility. In Design Automation Conference 1998. Proceedings of
the ASP-DAC ’98. Asia and South Pacific, pages 289–294, 1998.

13. C. Hu and S. Zain. NSEU mitigation in avionics applications (XAPP1073 (v1.0)
may 17, 2010), October 2011.

14. R. Huslende. A combined evaluation of performance and reliability for degradable
systems. In Proceedings of the 1981 ACM SIGMETRICS conference on Measure-
ment and modeling of computer systems, pages 157–164. ACM, 1981.

15. ISOGraph. http://www.isograph-software.com.
16. R Karri and A. Orailoglu. High-level synthesis of fault-secure microarchitectures.

In Design Automation, 1993. 30th Conference on, pages 429–433, 1993.
17. K.M. Kavi, B.P. Buckles, and U. Narayan Bhat. A formal definition of data flow

graph models. Computers, IEEE Transactions on, C-35(11):940–948, 1986.
18. P. Kenterlis, N. Kranitis, A. M. Paschalis, D. Gizopoulos, and M. Psarakis. A

low-cost SEU fault emulation platform for SRAM-based FPGAs. In IOLTS, pages
235–241, 2006.

19. V. V. Kumar, R. Verma, J. Lach, and J. Bechta Dugan. A markov reward model for
reliable synchronous dataflow system design. In Dependable Systems and Networks,
2004 International Conference on, pages 817–825, 2004.

20. V.V. Kumar and J. Lach. IC modeling for yield-aware design with variable defect
rates. In Reliability and Maintainability Symposium, 2005. Proceedings. Annual,
pages 489–495, 2005.

21. A. Lesea. Continuing experiments of atmospheric neutron effects on deep submi-
cron integrated circuits (WP286 v1.1), October 2011.

22. W. Mansour and R. Velazco. SEU fault-injection in VHDL-based processors: A
case study. J. Electronic Testing, 29(1):87–94, 2013.

23. P. G. Paulin and J. P. Knight. Force-directed scheduling for the behavioral syn-
thesis of asics. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 8(6):661–679, 1989.

24. PRISM. http://www.prismmodelchecker.org.
25. A.M. Saleh, J.J. Serrano, and J.H. Patel. Reliability of scrubbing recovery-

techniques for memory systems. Reliability, IEEE Transactions on, 39(1):114–122,
1990.

26. R. M. Smith, K.S. Trivedi, and A.V. Ramesh. Performability analysis: measures,
an algorithm, and a case study. Computers, IEEE Transactions on, 37(4):406–417,
1988.

27. W. J. Stewart. Introduction to the numerical solution of Markov Chains. Princeton
University Press, 1994.

28. C. Thibeault, Y. Hariri, S. R. Hasan, C. Hobeika, Y. Savaria, Y. Audet, and F. Z.
Tazi. A library-based early soft error sensitivity analysis technique for SRAM-
based FPGA design. J. Electronic Testing, 29(4):457–471, 2013.

29. S. Tosun, N. Mansouri, E. Arvas, and Yuan Xie. Reliability-Centric High-Level
Synthesis. In Proc. of DATE, 2005.

30. Device reliability report: Second quarter (UG116 v9.1), Xilinx corporation, 2012.

98

TTM/PAT: Specifying and Verifying
Timed Transition Models

Jonathan S. Ostroff1, Chen-Wei Wang1, Yang Liu2, Jun Sun3 and Simon
Hudon1

1 Department of Electrical Engineering and Computer Science, York University
2 School of Computer Engineering, Nanyang Technological University

3 Singapore University of Technology and Design

Abstract. Timed Transition Models (TTMs) are event-based descrip-
tions for specifying real-time systems in a discrete setting. We propose
a convenient and expressive event-based textual syntax for TTMs and
a corresponding operational semantics using labelled transition systems.
A system is specified as a composition of module instances. Each module
has a clean interface for declaring input, output, and shared variables.
Events in a module can be specified, individually, as spontaneous, fair or
real-time. An event action specifies a before-after predicate by a set of
(possibly non-deterministic) assignments and nested conditionals. The
TTM assertion language, linear-time temporal logic (LTL), allows ref-
erences to event occurrences, including clock ticks (thus allowing for a
check that the behaviour is non-Zeno). We implemented a model checker
for the TTM notation (using the PAT framework) that includes an editor
with static type checking, a graphical simulator, and a LTL verifier. The
tool automatically derives the tick transition and implicit event clocks,
removing the burden of manual encoding them. The TTM tool performs
significantly better on a nuclear shutdown system than the manually
encoded versions analyzed in [6].

Keywords: real-time systems, specification, verification, timed transi-
tion models, fairness, model checking

1 Introduction

Checking the correctness of real-time systems is both challenging and important
for industrial applications. In [6], the authors find it convenient to use a Timed
Transition Model (TTM) to describe and verify a nuclear reactor shutdown sys-
tem. A graphical statechart-based model checker for TTMs developed in [7] is
no longer supported.

To verify the correctness of the shutdown system, authors of [6] manually
translate TTMs into timed automata and discrete transition systems, and per-
form the real-time verification using, respectively, the Uppaal [5] and SAL [3]
model checkers. Real-time models of substantial systems tend to be complex.
The manual translation of a TTM to other formats (as in [6]) is time consuming
and error prone, may introduce extra states or transitions in the process, and
makes it hard to trace the generated counterexamples back to the original model.

99

2 Jonathan S. Ostroff, Chen-Wei Wang, Yang Liu, Jun Sun and Simon Hudon

In this paper, we develop a new and convenient event-based notation for
TTMs consisting of a textual syntax and formal operational semantics. The
one-step semantics allows us to use the PAT toolset [10, 9] to develop an explicit
state model checker for the new notation. The resulting model checker performs
significantly better than the manually encoded model using other tools, at the
same time bypassing the need to do manual translation. The new model checker
has good support for type checking, visual simulation, and convenient counter-
example traceability back to the model.

The event-based syntax also makes the language amenable to formal rea-
soning using theorem proving in the spirit of Event-B [1] and compositional
reasoning. This provides a timed extension to the Event-B notation (although,
in this paper, we do not consider refinement).

Outline and Contributions. This paper presents three main contributions. First,
our new TTM notation allows for the description of a variety of discrete reactive
systems (see Section 2 for a pacemaker example) by cooperating modules that
contain variables and events. Events have implicit clocks for imposing lower and
upper time bounds on their occurrences. Our notation also supports sponta-
neous, fair, and timed behaviours at both the event level and the system level.
Timers are explicit clocks that may be used to constrain system behaviour.
Second, we develop a formal operational semantics with digitization (see Sec-
tion 3) that is amenable to automated tool support. Third, we implement the
TTM/PAT tool for specifying and verifying TTMs (see Section 4 for its eval-
uation). System properties can be expressed in the linear-time temporal logic
(LTL) and may refer to timers and event occurrences (see Section 3 for repre-
senting event occurrences as state predicates). The properties language directly
supports healthiness checks such as non-Zeno behaviour1 and the monotonicity
of timers. More details on the tool and experimental data are discussed in an
extended report [8], and the grammar of TTM textual syntax and the tool are
available at https://wiki.eecs.yorku.ca/project/ttm/.

2 A Small Pacemaker Example

We use a small pacemaker example (similar to the one in [4]) to illustrate the
real-time features of TTMs. A cardiac pacemaker is an electronic device im-
planted into the body to regulate the heart beat by delivering electrical stimuli
(called paces) over leads with electrodes that are in contact with the heart. The
pacemaker may also detect (or sense) natural cardiac stimulations.

A pacemaker in the VVI mode operates in a timing cycle that begins with
a ventricular pacing or sensing. The basis of the timing cycle is the lower rate
interval (LRI=1000ms): the maximum amount of time between two consecutive
ventricular sensing. If the LRI elapses and no sensing has occurred since the
beginning of the cycle, a pace is delivered and the cycle is reset. On the other
hand, if a heart beat is sensed, the cycle is reset without delivering a pace.

1 In TTM/PAT we consider a discrete time domain, where there is an explicit transi-
tion for the tick of a global clock. Zeno behaviour then denotes executions in which
the tick transition does not occur infinitely often (i.e., at some point, time stops).

100

TTM/PAT: Specifying and Verifying Timed Transition Models 3

At the beginning of each cycle, there is a ventricular refractory period (VRP
= 400ms): chaotic electrical activity that immediately follows a heart beat, and
may lead to spurious sensing that interferes with future pacing. Sensing is there-
fore disabled during the VRP period. Once the VRP period is over, a ventricular
sensing inhibits the pacing and resets the LRI, starting a new timing cycle.

In the VVI mode, hysteresis pacing can be enabled to delay pacing beyond
the LRI in order to give the heart a chance to resume the normal operation. In
that case, the timing cycle is set to a larger value, namely the hysteresis rate
interval (HRI=1200ms). It becomes enabled after a natural heart beat has been
sensed. In [4], hysteresis pacing is enabled after a ventricular sense is received,
and disabled after a pacing signal is sent.

Using the textual syntax of TTM, we define constants and a timer t for the
cardiac cycle as follows:

#define VRP 400;
#define LRI 1000;
#define HRI 1200;

timers
t: 0..(HRI+1)

enabledinit
end

share initialization
sense: BOOL = false
pace: BOOL = false

end

Timer t has a range from zero to HRI+1, and it is initially zero and enabled.
When the value of t reaches one beyond HRI + 1, it stops counting up and its
monotonicity predicate, mono(t), becomes false. This predicate holds so long as
that timer t is ticking in synch with a tick of a global clock, and that it is not
stopped or restarted (see Section 3). The tick transition is an implicit transi-
tion (i.e., it is not given by the text of a TTM) representing the ticking of a
global clock. The tick transition increments timers and implicit clocks associ-
ated with events. We also defined shared variables sense and pace to represent,
respectively, a ventricular sensing or pacing.

We declare a module template for the heart as follows:

module HEART
interface

pace: share BOOL
sense: share BOOL

local
ri : INT = HRI
last ri: INT = HRI
pc: INT = 0

events
hbn[VRP, ∗] // natural heart beat
when !pace && pc==0
do sense := true,

ri := HRI,
last ri:=ri,
pc := 1

end

hbp[0,0] // paced heart beat
when pace && VRP <= t && pc==0
do pace := false,

ri := LRI ,
last ri := ri,
pc := 1

end

new cycle[0,0] // restart a new cycle
when pc==1
start t
do pc := 0
end

101

4 Jonathan S. Ostroff, Chen-Wei Wang, Yang Liu, Jun Sun and Simon Hudon

The interface of module template HEART declares the access to shared variables
sense and pace. The local variable ri (rate interval) is either HRI or LRI de-
pending on whether hysteresis pacing is enabled. Likewise last ri records the last
value of the rate interval. They are auxiliary variables: they annotate the sys-
tem state without affecting2 the behaviours and are used in LTL specifications.
Variable pc (program counter) is used as a sequencing mechanism for events.

The heart module has a natural heartbeat (event hbn) and a paced heartbeat
(event hbp). If there is a natural heart beat, then the sense flag is set, ri is set to
HRI, and the last rate interval is also recorded in last ri. After the VRP period,
it is also possible for a paced heart beat to occur if the pace flag is set. Thus
pace ∧VRP ≤ t is part of the guard of the urgent event hbp[0, 0]. After either a
natural or paced heart beat, the timer t is restarted by the new cycle event and
the cardiac cycle begins again.

A natural heart beat might occur at any time after the ventricle refractory
delay VRP, or it might never occur. Thus the lower time bound of hbn is VRP
and the upper time bound is ∗ (i.e ∞). If the upper time bound is ∗ then we
have a spontaneous event (i.e., an event that is not urgent or forced to occur).
We can thus accommodate a variety of fairness assumptions (discussed further
in Section 3), including spontaneous events, just or compassionate events, and
real-time events that must occur between their lower and upper time bounds.
An urgent event e[0, 0] is one that must occur before the next tick of the global
clock (provided its guard continuously remains true).

We formulate the requirements using linear time temporal logic (LTL) solely
in terms of the phenomena of the environment (i.e., the heart) as follows:

R1: �♦((H.hbn∨H.hbp) ∧ (V RP ≤ t ≤ HRI)).3 Infinitely often, a natural or
paced heart beat occurs between VRP and HRI time units from each other.

R2: �(H.hbn → (VRP ≤ t ≤ H.last ri)). A natural heartbeat occurs only
in the closed interval [VRP, H.last ri] in the cardiac cycle. H.last ri records
the required rate interval in the heart for the last complete cycle, either LRI
or HRI, depending upon whether hysteresis pacing has been properly enabled.
Thus, �((H.last ri=LRI) ∨ (H.last ri=HRI)) also holds.

R3: �(H.hbp → (t = H.last ri)). A paced heart beat occurs only if the timer
t is at the relevant rate interval. The ventricle controller will have to estimate
H.ri (which, as opposed to H.last ri, relates to the current cycle) in order to
ensure that the heart paces according to this requirement.

There is a concern that some event (either in the heart module or elsewhere)
might illegally set the timer t to a value that makes the specification trivially
true. Of course, in a small system, inspection of the TTMs (or timed automata
in the case of Uppaal) might re-assure us that all is well. Nevertheless, it would
be advantageous to check that timers tick monotonically and uninterruptedly.
Thus each TTM timer t must be equipped with a corresponding monotonicity

2 Variables ri and last ri are used in neither event guards nor the right hand side of
assignments to non-auxiliary variables

3 H.hbn designates the event hbn in module instance H. The same syntax works for
local variables as well.

102

TTM/PAT: Specifying and Verifying Timed Transition Models 5

predicate mono(t) that holds so long as timer t is not stopped or restarted (see
Section 3). We may thus check (�♦H.new cycle)∧�(H.new cycle→ t = 0) and
�(H.new cycle → mono(t)U((H.hbn ∨H.hbp) ∧ (V RP ≤ t ≤ HRI))), which
guarantee that there is an appropriate heart beat in each cardiac cycle.

When using events with upper time bound 0, we must provide a way of
checking Zeno behaviour [7]. We can directly check that time always progresses
with the LTL formula �♦tick. The tick event is implicit. That is, it is automat-
ically constructed by the tool with the precise semantics described in Section 3.
The ability to refer to the occurrences of events in the TTM assertions makes
it possible to specify the required behaviour more directly than in other tools,
e.g. Uppaal. We now devise a ventricle controller whose cooperation with the
heart will satisfy requirements R1 to R3.

module VENTRICLE CONTROLLER
interface

pace : share BOOL
sense: share BOOL

local
ri : INT = HRI; pc: INT = 0

events
vpace[0,0]
when pc==0 && !sense && t==ri
do ri := LRI, pace := true, pc:= 1
end

vsense[0,0]
when pc==0 && sense
do ri := HRI, sense := false, pc :=1
end

compute delay[1,1]
when pc==1
do pc:= 0
end

end

The controller maintains its own estimate VC.ri of the heart’s rate interval H.ri,
where VC and H are module instances that we construct below. We may now
compose the heart together with the controller as follows:

instances
H = HEART

(share pace, share sense)
VC = VENTRICLE CONTROLLER

(share pace, share sense)
end
composition

System = H || VC
end

#define rt (t=H.last ri);
#define t0 (t=0);
#define wr VRP <= t && t <= HRI;
#assert System |= [](H.hbp −> rt);
#assert System |= []<>(H.new cycle && t0);
#assert System |=

[](H.new cycle && t0 −>
mono(t) U ((H.hbn || H.hbp) && wr));

#assert System |= []<>tick;

The above syntax is accepted by the TTM/PAT tool, and all the requirements
are verified in a few seconds. The syntax also allows us to compose an indexed set
of instances. For example, in Fischer’s mutual exclusion algorithm (Section 4.2),
we write:

composition fischer = || i: 1..n @ PROCESS(share x, share c, in i) end

More details on this example is discussed in an extended report [8].

103

6 Jonathan S. Ostroff, Chen-Wei Wang, Yang Liu, Jun Sun and Simon Hudon

3 TTM Syntax and Semantics

Section 2 provides an example of the new concrete textual syntax for TTMs. In
this section, we provide a one-step operational semantics for TTMs.

3.1 Abstract Syntax. Following [7] and using the mathematical conven-
tions of Event-B [1], we define the abstract syntax of a TTM module instanceM
as a 5-tuple, i.e.,M = (V, s0, T, t0, E) where 1) V is a set of variable identifiers,
declared local or in a module interface; 2) T is a set of timer identifiers; 3) E is
a set of events that may change the state; 4) s0 ∈ STATE is the initial variable
assignment, with STATE , V → VALUE; and 5) t0 ∈ TIME is the initial
timer assignment, with TIME , T → N.

Concrete syntax of event e:

event id [l,u] just
when grd
start t1, t2
stop t3, t4
do v1 := exp1,

if condition then v2 := exp2
else skip fi,
v3 :: 1..4

end

Abstract syntax of the event e:

– e.id ∈ ID;
– e.l ∈ N;
– e.u ∈ N ∪ {∞}
– e.fair ∈ {spontaneous, just, compassionate}
– e.grd ∈ STATE× TIME→ BOOL;
– e.start ⊆ T ;
– e.stop ⊆ T ;
– e.action ∈ STATE× TIME↔ STATE;

Fig. 1: Concrete and Abstract syntax of TTM events

We use an 8-tuple (id, l, u, fair, grd, start, stop, action) to define the abstract
syntax of an event e, and we use the dot notation “.” to access the fields, as shown
on the right of Fig. 1. The string identifier of an event e is written as e.id. The
guard of event e, i.e., e.grd, is any Boolean expression in V and T . For example,
on the left of Fig. 1, we have V = {v1, v2, v3, · · · } and T = {t1, t2, t3, t4, · · · }.
Functions boundt ∈ T→N and type ∈ T→P(N) provide, respectively, the upper
bound and the type of each timer. For example, if timer t1 is declared in the
TTM as t1 : 0..5, then boundt(t1) = 5 and type(t1) = {0..6}. As will be detailed
below, timers count up to one beyond the specified bound at which point they
remain fixed until they are restarted.

An event e must be taken between its lower time bound e.l and upper time
bound e.u, provided that its guard e.grd remains true. The event action involves
simultaneous assignments to v1, v2, · · · . The notation v3 :: 1..4 is an example of a
demonic assignment in which v3 takes any value from 1 to 4. All the assignments
in the event action are applied simultaneously in one step.

In an assignment y := exp, the expression on the right may use primed (e.g.
x′) and unprimed (e.g. x) state variables as well as the initial value of timers. A
variable with a prime refers to the variable’s value in the next state and a variable
without prime refers to its value in the current state. The use of primed vari-
ables in expressions allows for simpler and more expressive descriptions of state

104

TTM/PAT: Specifying and Verifying Timed Transition Models 7

changes. The state changes effected by an event e is described in the abstract
syntax by a before-after predicate e.action. The concrete syntax also allows for
assignments to be embedded in (possibly nested) conditional statements.4

3.2 Formal Semantics. We provide a one-step operational semantics of
a TTM module instance M in LTS (Labelled Transition Systems).

Definition: LTS: Given a TTM module instance M, an LTS (Labelled Tran-
sition System) is a 4-tuple L = (Π,π0,T,→) where 1) Π is a set of system
configurations; 2) π0 ∈ Π is an initial configuration; 3) T is a set of transitions
names; and 4) → ⊆ Π ×T×Π is a transition relation.

We now describe the LTS semantics of TTMs. Let Eid , {e ∈ E • e.id}
be the set of event names (identifiers). A configuration π ∈ Π is defined by a
6-tuple (s, t,m, c, x, p). We explain each of the six components as follows:

• s ∈ STATE is a value assignment for all the variables of the system. The state
can be read and changed by any transition corresponding to an event in E.

• t ∈ TIME is a value assignment for the timers of the system. Events (and
hence their corresponding transitions) may only start, stop and read timers. As
will be discussed below, we introduce a special transition, called tick, which also
changes the timers. Timers ti that are stopped have values boundt(ti) + 1.

•m ∈ T→BOOL records the status of monotonicity of each timer. Suppose event
e1 in a TTM starts t1. In LTL we might write �(e1 ∧ t1 = 0 → ♦(q ∧ t1 ≤ 4))
(note that t1 = 0 is redundant) to specify that q becomes true within 4 time
units of event e1 occurring. However, other events might stop or restart t1 before
q is satisfied hence breaking the synchronicity between t1 and a global clock.5

Instead, we express the intended property as �(e1∧t1 = 0 → m(t1) U (q∧t1 ≤
4)). The expression m(t1) (standing for monotonicity of t1) holds in any state
where t1 is not stopped or being reset. We explain monotonicity further below.

• c ∈ Eid → N ∪ {−1} is a value assignment for a clock implicitly associated
with each event. These clocks are used to decide whether an event has been
enabled for long enough and whether it is urgent. An event e ∈ E is enabled
when its clock’s value is between the event’s lower time bound (i.e., e.l) and
its upper time bound (i.e., e.u). Furthermore, the type (or range) of c(e.id) is
{−1, 0, ...e.u}. When an event’s clock is disabled, as opposed to the convention
used with timers, the clock’s value is −1.

4 With all the complexity of structures allowed by the syntax of actions, sequential
composition is not allowed. This is in an effort to make actions into specifications
rather than implementations. This would allow us to generalize TTMs to allow an
Event-B style of symbolic reasoning.

5 Suppose that event e2 also starts t1, that e3 establishes q and that the events occur

in the following order: π0
e1→ π1

t1=0

tick3

→ π4
t1=3

e2→ π5
t1=0

tick2

→ π7
t1=2

e3→ π8
t1=2 ∧ q

· · · . This

execution satisfies the first LTL formula but does not satisfy the intended specifica-
tion: when q becomes true, t1 = 2 but it is 5 ticks away from the last occurrence of
e1.

105

8 Jonathan S. Ostroff, Chen-Wei Wang, Yang Liu, Jun Sun and Simon Hudon

• x ∈ Eid ∪ {⊥} is used as a sequencing mechanism to ensure that each tran-
sition e is immediately preceded by an e# transition whose only function is
to update the monotonicity record m. For example, in the following execution

· · · e1→ π1
x=⊥

e2#→ π2
x=e2

e2→ π3
x=⊥
→ · · · , suppose in π1 the value of timer t2 is 3 and

that e2 restarts t2. Then, in π2, we have x = e2 ∧ t2 = 3 ∧ m(t2) = false. In
π3, we have x = ⊥ ∧ t2 = 0 ∧ m(t2) = true. In order to record the breaking
of monotonicity, the e2# transition sets m(t2) to false, which gets set back to
true in the next execution step. The precise effect of these transitions will be
described below.

• p ∈ Eid ∪ {tick,⊥} holds the name of the last event to be taken at each
configuration. It is ⊥ in the initial configuration as no event has yet occurred. It
allows us to refer to events in LTL formulas in order to state that they have just
occurred. For instance, in the formula above, (s, t,m, p) |= e1 ∧ t1 = 0 (which
reads: the configuration satisfies the formula) evaluates to p = e1 ∧ t(t1) = 0.

Given a flattened module instance M, the transitions of its corresponding
LTS are given as T = Eid ∪ E# ∪ {tick}. As explained above, for each event
e ∈ E, we introduce a monotonicity breaking transition e.id#. We thus define
E# , {e ∈ E • e.id#}. The tick transition represents one tick of a global
clock. Explicit timers and event lower and upper time bounds are described with
respect to this tick transition. We define the enabling condition of event e ∈ E as
e.en , e.grd ∧ e.l ≤ e.c ≤ e.u, where e.c evaluates to c(e.id) in a configuration
whose clock component is c. Thus an event is enabled in a configuration that
satisfies its guard and where the event’s implicit clock is between its lower and
upper time bound.

The initial configuration is defined as π0 = (s0, t0,m0, c0,⊥,⊥), where s0
and t0 come from the abstract syntax of the TTM. m0 and c0 are given by:

m0(ti) ≡ t0(ti) = 0

c0(ei.id) =

{
0 (s0, t0) |= ei.grd

−1 (s0, t0) 6|= ei.grd

for each ti ∈ T and ei ∈ E. It is implicit in the above formula that m0(ti)
depends only on whether or not ti is initially enabled (specified using the keyword
enabledinit or disabledinit). If the keyword enabledinit is specified, t0(ti) =
0; otherwise, if the keyword disabledinit is specified, t0(ti) = boundt(ti) + 1.

An execution σ of the LTS is an infinite sequence, alternating between con-
figurations and transitions, written as π0

τ1→ π1
τ2→ π2 → · · · where τi ∈ T and

πi ∈ Π. Below, we provide constraints on each one-step relation (π
e→ π′) in

an execution. If an execution σ satisfies all these constraints then we call σ a
legal execution. We let ΣL denote the set of all legal executions of the labelled
transition system L. The set ΣL provides a precise and complete definition of
the behaviour of L. If a state-formula q holds in a configuration π, then we write
π � q. In some formulas, such as guards, all the components of a configuration
are not necessary. We express this by dropping some components of the config-
uration on the left of the double turnstile (|=), as in (s0, t0) |= e.grd. Given a

106

TTM/PAT: Specifying and Verifying Timed Transition Models 9

temporal logic property ϕ and an LTS L, we write L � ϕ iff ∀σ ∈ ΣL • σ � ϕ.
The three possible transition steps are:

(s, t,m, c,⊥, p) e#→ (s, t,m′, c, e, p) (3.1)

(s, t,m, c, e, p)
e→ (s′, t′,m′, c′,⊥, e) (3.2)

(s, t,m, c,⊥, p) tick→ (s, t′,m′, c′,⊥, tick) (3.3)
Each of the above transitions has side conditions which we now enumerate.

3.2.1 Taking e#. The monotonicity breaking transition e#, specified in Equa-
tion 3.1 (p9), is taken only if (s, t, c) � e.en and the x-component of the config-
uration is ⊥. For each t ∈ T , m′(t) ≡ t /∈ e.start ∧m(t). This ensures that, for
timer t, just before it is (re)started, m(t) = false. It is set back to true by the
immediately following event, e, and it remains true as long as t is not restarted
and has not reached its upper bound. Transition e# modifies only m and x in
the configuration, and thus maintains the truth of (s, t, c) � e.en.

3.2.2 Taking e. The transition e, specified in Equation 3.2 (p9), is taken only if
(s, t, c) � e.en and the x-component of the configuration is e. The component s′

of the next configuration in an execution is determined nondeterministically by
e.action, which is a relation rather than a function. This means that any next
configuration that satisfies the relation can be part of a valid execution, i.e., s′ is
only constrained by (s, t, s′) ∈ e.action. The other components are constrained
deterministically. The following function tables specify the updates to m, t and
c upon occurrence of transition e.

For each timer ti ∈ T m′(ti) t′(ti)

ti ∈ e.start ti ∈ e.stop impossible
ti /∈ e.stop true 0

ti /∈ e.start ti ∈ e.stop false boundt(ti) + 1
ti /∈ e.stop m(ti) t(ti)

For each event ei ∈ E c′(ei.id)

(s′, t′) 6|= ei.grd -1

(s′, t′) |= ei.grd
(s, t) |= ei.grd ∧ ¬ei = e c(ei.id)
(s, t) 6|= ei.grd ∨ ei = e 0

In the above, we start and stop the implicit clock of ei as a consequence of
executing e, according to whether ei.grd becomes true, is false (i.e., becomes or
remains false) or remains true. Since event ei becomes enabled ei.l units after
its guard becomes true, this allows us to know when to consider ei as enabled,
i.e., ready to be taken. As a special case, the implicit clock of event e (under
consideration) is restarted when e.grd remains true.

3.2.3 Taking tick. The tick transition, specified in Equation 3.3 (p9), is taken
only if ∀e ∈ E • c(e.id) < e.u and the x-component of the configuration is ⊥
(thus preventing tick from intervening between any e# and e pair). For any
timer ti ∈ T , the updates to t′, m′ and c′ are:

107

10 Jonathan S. Ostroff, Chen-Wei Wang, Yang Liu, Jun Sun and Simon Hudon

t′(ti) = (t(ti) ↓ boundt(ti)) + 1

m′(ti) ≡ ¬ (t(ti) = boundt(ti)+1)

For each event e ∈ E c′(e.id)

(s′, t′) 6|= e.grd -1

(s′, t′) |= e.grd
(s, t) 6|= e.grd 0
(s, t) |= e.grd c(e.id) + 1

Thus, tick increments timers and implicit clocks to their upper bounds. Transi-
tion tick also marks timers as non-monotonic when they reach their upper bound
and reset clocks when the corresponding events are disabled.

3.2.4 Scheduling. So far, we have made no mention of scheduling: we con-
strained executions so that the state changes in controlled ways, but a given
execution may still make no progress. To make progress, we need to assume
fairness. In the current implementation of TTM/PAT, the possible scheduling
assumptions6 on TTM events are restricted to the following four:

1. Spontaneous event. Even when it is enabled, the event might never be taken.
This is assumed when no fairness keyword is given and the upper time bound is
* or unspecified.

2. Just event scheduling (also known as weak fairness [10]). For any execution
σ ∈ ΣL, if an event e eventually becomes continuously enabled, it has to occur
infinitely many times, that is σ � ♦�e.en → �♦e. This is assumed when
the keyword just is given next to the event and the upper time bound is * or
unspecified. We use e.en and not e.grd in the fairness formula as the event can
only be taken e.l units after its guard became true.

3. Compassionate event scheduling (also known as strong fairness [10]). For any
execution σ ∈ ΣL, if an event e becomes enabled infinitely many times, it has
to occur infinitely many times, that is σ � �♦e.en → �♦e. This is assumed
when the keyword compassionate is given next to the event and the upper
time bound is * or unspecified.

4. Real-time event scheduling. The (finite) upper time bound (u) of the event e
is taken as a deadline: if the event’s guard is true for u units of time, it has to
occur within u units of after the guard becomes true or after the last occurrence
of e. To achieve this effect, the event e is treated as just. Since tick will not occur
as long as e is urgent (i.e., e.c = e.u), transition e will be forced to occur (unless
some other event occurs and disables it).

To accurately model time, the tick transition is treated as compassionate in
the LTS. This ensures that time progresses except in cases of Zeno-behaviors (dis-
cussed below). Spontaneous events cannot be used to establish liveness proper-
ties. Justice and compassion are strong enough assumptions to establish liveness
properties but not real-time properties. Finally, real-time events can establish
both liveness and real-time properties.

The above semantics allows for Zeno behaviours which occur when there are
loops involving events with zero upper time bound (i.e., e[0, 0]). We could ban
e[0, 0] events altogether, but that would eliminate behaviours that are feasible
and useful, e.g., where we describe a finite sequence of immediately urgent events

6 The scheduling assumptions are taken care of by the model-checking algorithms [10].

108

TTM/PAT: Specifying and Verifying Timed Transition Models 11

(not in a loop). We can check that the system is non-Zeno by checking that the
system satisfies �♦tick.

The abstract TTM semantics provided above can be (and has been) im-
plemented efficiently. For example, in the abstract semantics every event e is
preceded by a breaker of monotonicity e#. Most of the e# events do not change
the configuration monotonicity component m and can thus be safely omitted
from the reachability graph thereby shrinking it.

3.3 Semantics of Module Composition. We have specified so far the
semantics of individual TTM machines. However, the TTM notation includes a
composition operator which was not discussed so far. The semantics of systems
comprising many machines is defined through flattening, i.e. by providing a single
machine which, by definition, has the same semantics as the whole system.

Instantiation. When integrating modules in a system, they first have to be in-
stantiated. This means that the interface variables of the module must be linked
to variables of the system it will be a part of. For example if we had a Phil
module with two shared variables, left fork and right fork , and two global fork
variables f1 and f2, we could instantiate them as:

instances p1 = Phil(share f1, share f2) ; p2 = Phil(share f2, share f1) end

This makes f1 the left fork of p1 and the right fork of p1, and makes f2 the left
fork of p2 and the right fork of p1. Philosopher p1 is therefore equivalent to the
module Phil with its references to left fork substituted by f1 and its references
to right fork substituted by f2.

Composition. The composition m1||m2 is an associative and commutative func-
tion of two module instances. Before flattening the composition, we rename the
local variables and the events so that the name of each local variable will be
unique across the whole system. The renaming is done in the variable declara-
tions, in the expressions in events, and on the left-hand sides of assignments. This
is strictly a syntactic change and does not affect the semantics of the instances.

We then proceed to creating the composite machine. Its local variables will
be the (disjoint) union of the local variables of the two instances. Its interface
variables will be the (possibly non-disjoint) union of the interface variables of
both instances with their mode (in, out, share) adjusted. The set of the events
of the composition is the union of the set of events of both machines.

Iterated Composition. Iterated composition is the mechanism that allows us to
compose a number of similar instances without specifying each individually. For
example, in the case of a network of processes, we may want to specify the pro-
cesses once and instantiate them many times with a different process identifier.

system = || pid : PID @ Process(in pid)

where PID is the set of process identifiers. It allows us to change the number
of processes by just changing that set. In this case, if PID = 1..3, the above is
equivalent to:

instances p1 = Process(in 1) ; p2 = Process(in 2) ; p3 = Process(in 3) end
composition system = p1 || p2 || p3 end

109

12 Jonathan S. Ostroff, Chen-Wei Wang, Yang Liu, Jun Sun and Simon Hudon

Nuclear Reactor
Pressure
Power Trip Relay

3s

2s Relay

Pressure

Power

DRT Shutdown Computer
both_hi[1,1] delay[29,29]

power_low[1,1] power_hi[1,1]
relay:=open

delay[19,19]

power_hi[1,1]

power_low[1,1]
relay:=close

State-Based Model of Controller

Fig. 2: DRT System: Context Diagram and Transition Diagram of Controller

4 Evaluation

In Section 4.1, we report on the performance of our new TTM model checker in
comparison with the manual encoding in Uppaal and SAL in [6]. If the system
was implemented directly in Uppaal (as opposed to using the manual encod-
ing from a TTM), the Uppaal results would likely have been much better. This
section merely shows that if a designer finds the TTM notation more conve-
nient to use, then our new tool (1) saves the designer from the effort of manual
translation, and from resulting error; and (2) performs better than the manually
encoded version in other formats.

In Section 4.2, we address the current limitation of TTM/PAT, implemented
using digitization, by reporting on its performance on the Fischers mutual ex-
clusion algorithm, in comparison with the symbolic model checkers Uppaal and
RTS. Experiments were conducted on a 64-bit Windows 7 PC with Intel(R)
Core(TM) i7 CPU 860 @ 2.80 GHz (16.0 GB RAM).

4.1 Delayed Reactor Trip System. The DRT (delayed reactor trip)
shutdown system, analyzed in [6], is illustrated in Fig. 2. The old implementation
of the DRT used timers, comparators and logic gates as shown on the left of
Fig. 2. The new DRT system is to be implemented on a microprocessor system
with a cycle time of 100ms. The system samples the inputs and passes through
a block of control code every 0.1 seconds. A high-level state/event description
(SPEC) of the code that replaces the analogue system is shown on the right of
Fig. 2 ([6]). When the reactor pressure and power exceed acceptable safety limits
in a specified way, we want the DRT control system to shut down the reactor.
Otherwise, we want the control system to be reset to its initial monitoring state.

In [6], the SPEC level TTM description of the controller is refined into a
lower level PROG description that is closer to implemented code (in a cyclic
executive). Translations to PVS are used to show that PROG refines SPEC.
The reactor itself is represented by a TTM that can change the power and pres-
sure levels arbitrarily every .1 seconds (1 tick of the clock), by using a demonic
assignment setting them to either low or high. The system thus consists of the

110

TTM/PAT: Specifying and Verifying Timed Transition Models 13

Property Controller Model
TTM: �♦ tick

(s) Result

TTM/PAT

(s)

Uppaal

(s)
SAL
(s)

Fres:

System
Response

SPEC 11 × 11 13 25
PROG 31 × 32 24 407
SPECr 5 × 3 12 15
PROGr 14 × 9 21 330

Fires:

Initialized
System

Response

SPEC .5 X .4 .9 11
PROG 1 X 1 1 20
SPECr .3 X .2 .4 7
PROGr .8 X .6 1 13

SPECr1||SPECr2 16 X 11 62 235
PROGr1||PROGr2 109 X 70 76 >1h

Frec:

System
Recovery

SPEC .3 × .08 .1 6
PROG .8 × .2 .3 7
SPECr .1 X .07 .2 4
PROGr .3 X .07 .6 5

SPECr1||SPECr2 22 × .06 145 18
PROGr1||PROGr2 142 × .1 11 >1h

Table 1: TTM/PAT vs. Uppaal vs. SAL: Delayed Reactor Trip System

controller (either SPEC or PROG) executing in parallel with plant (the reac-
tor). The two essential properties that the system must satisfy are:

Response Formula Fres. Henceforth, if Power and Pressure simultaneously
exceed their threshold values for at least 2 clock ticks, and 30 ticks later Power
exceeds its threshold for another 2 ticks, then within 30 to 32 ticks, open the
reactor relay for at least 20 ticks.

Recovery Formula Frec. Henceforth, if the relay is open for 20 ticks, and after
the 20th tick the power is low for at least 2 ticks, then the relay is closed before
the 22nd tick.

With the help of an observer and timers, the response formula Fres is rep-
resented in LTL by a liveness property �p → ♦q where p and q use timers to
capture the timed response (see [6] for the details). Likewise, the recovery for-
mula Frec can be reduced to a safety property �¬(Tw = 2∧relay = open) where
Tw is a timer describing a state in which the power has returned to normal for
2 ticks of the clock, but the relay is still open.

Both SPEC and PROG did not satisfy Fres due to an error in the observer.
Thus, verification of Fres should produce counterexamples in any model checker.
Also, it was discovered that there was an error in the controller (in both SPEC
and PROG) as the recovery property was not satisfied. The revised and corrected
descriptions of the controller are SPECr and PROGr, respectively, whose re-
sponse property is referred to as Fires.

To generate large reachability graphs, multiple controllers were run in paral-
lel. For example, in checking the response property Fires on PROGr1||PROGr2,
the TTM tool explored 421,442 states and 821,121 transitions (in 70 seconds).
These systems and their LTL specifications (some valid and some invalid) pro-
vide a rich set of examples to test the performance of the various model checkers.

111

14 Jonathan S. Ostroff, Chen-Wei Wang, Yang Liu, Jun Sun and Simon Hudon

Property Result n Uppaal

(s)

PAT/RTS
TTM/PAT

(s)
clock zone

(s)

digitization

(s)

non-zenoness:
�♦ tick X

4

not directly supported

.5
5 4
6 31
7 230
8 >1h

P1 mutual exclusion:
� (c ≤ 1)

X

4 .04 .12 .08 .26
5 .1 .2 .4 1.9
6 .8 2 3 14
7 14 21 28 104
8 563 250 244 768
9 >1h 2918 >1h >1h

P2 liveness:
�(request→ ♦wait) X

4 .06 .07 .1 .3
5 .2 .3 .8 3
6 4 3 6 24
7 181 29 58 177
8 >1h 307 >1h >1h

P3 liveness:
�(request→ ♦cs) ×

4 .2 .06 .09 .01
5 .2 .3 .9 .01
6 .3 3 19 .03
7 .2 70 942 .04
8 .2 2277 >1h .03

Table 2: TTM/PAT vs. RTS/PAT vs. Uppaal: Fischer’s Algorithm

In [6], the TTMs were manually encoded into the Uppaal and SAL model check-
ers. The authors of [6] show that, in general, Uppaal performed better than SAL
given its real-time features. The manual encoding of TTMs into Uppaal and
SAL is itself a time-consuming process. This is where the new TTM/PAT tool
is useful as the encoding is automatic. What about performance? In Table 1,
we compare TTM/PAT to the encodings in SAL and Uppaal for response and
recovery, and for the various versions of the controller. The 4th column labelled
“Result” has a checkmark where the LTL property is valid; otherwise, the model
checker produces a counterexample. The 3rd column provides the time it takes
to check for non-Zeno behaviour in the TTM tool (not supported in the other
tools). In general, TTM/PAT significantly outperforms both encodings in SAL
and in Uppaal. There is only one exception in the second row for Fres. TTM/-
PAT finds the formula invalid in 9 seconds versus 18 seconds for Uppaal (not
shown in the table) where a counterexample is not requested. However, it takes
TTM/PAT 32 seconds to find the counterexample versus 24 seconds for Uppaal.

4.2 Fischer’s Mutual Exclusion Algorithm. TTM/PAT is an explicit
state tool for discrete systems. The expectation was that it would perform well in
the category of explicit state model checkers. Nevertheless, it was expected that
symbolic checkers (using timed automata) such as Uppaal would outperform it.
In addition, Uppaal is continuous time (although timing constants in Uppaal are
integers) whereas TTMs are discrete time. Nevertheless, the assertion notation of

112

TTM/PAT: Specifying and Verifying Timed Transition Models 15

Assertion TCTL of Uppaal LTL of TTM/PAT

Henceforth p S |= A� p S |= � p

Eventually p S |= A♦ p S |= ♦ p
Whenever p, eventually q S |= p −→ q S |= � (p→ (♦ q))
Infinitely often p S |= true −→ p S |= �♦ p
Referring to a state M.state pc = state

Non-Zenoness × S |= �♦ tick
p until q × S |= p U q
q releases p × S |= q R p

Nesting of temporal operators × e.g., � (♦ p→ (pUq))
Referring to occurrences of event e × e

Timer t has increased monotonically × mono (t)

Eventually henceforth p × S |= ♦� p

S possibly maintains p S |= E� p inverse of S |= ♦ (¬p)
S possibly reaches p S |= E♦ p S reaches p

Nesting of path quantifiers × ×
∀♦ ∀� p × ×

Table 3: TTM vs. Uppaal: Language of Assertions

TTMs is more expressive than Uppaal (see Section 5 and Table 3) and its event-
based syntax is amenable to formal reasoning and compositional reasoning.

A comparison was performed in [9] between RTS (a PAT plugin) and Uppaal
using the Fischer’s mutual exclusion algorithm. We compare the performance of
the TTM/PAT tool to RTS and Uppaal using the same example. For a proper
comparison of the three tools, many more examples would be needed.

Our experiment shows that, in determining that properties P1 (a safety
property) and P2 (a liveness property stating that a process requesting access
to its critical section leads it to wait) are valid, the clock zone mode of RTS
is faster than Uppaal (see Table 2). The speed of TTM/PAT is within a factor
between 3 and 4 of the digitization mode of RTS. TTM/PAT is almost as fast as
Uppaal in producing counterexamples for property P3 (expressing the starvation
freedom property). Results in Table 2 (with n the number of processes put in
parallel) suggest that the techniques used in clock zones of RTS and those of
Uppaal would provide enhancements for more efficient verification of TTMs.

5 Conclusion

In this paper we provide a convenient, expressive textual syntax for event-based
TTMs and its operational semantics, used to build the TTM/PAT tool as a plug-
in of the PAT framework. The TTM assertion language, linear-time temporal
logic (LTL), allows references to event occurrences, including clock ticks (thus
allowing for a check that the behaviour is non-Zeno). Tool support includes an
editor with static type checking, a graphical simulator, and a LTL verifier. The
TTM tool performs significantly better on a nuclear shutdown system than the
manually encoded versions in Uppaal and SAL.

The TTM tool is an explicit state model checker (with a discrete time do-
main) that has comparable performance to the digitization mode of RTS [9] (see

113

16 Jonathan S. Ostroff, Chen-Wei Wang, Yang Liu, Jun Sun and Simon Hudon

end of Section 4). We can improve the performance of the tool by considering
a continuous time domain and using symbolic analysis, e.g., the clock zone al-
gorithms of RTS or the timed automata of Uppaal. In either case, this would
come at the cost of expressiveness. Table 3 shows that Uppaal’s TCTL asser-
tion language is less expressive than that of TTM notation. There are temporal
properties such as ♦�p that can be specified and verified in TTM/PAT but not
in Uppaal. Also, non-Zenoness and timer monotinicity can be checked directly
in the TTM assertion language. In RTS, the construct “P within [l, u]”, which
forces process P to terminate between l and u units of time, is not supported
by the clock zone algorithms; the lower time bound is the problematic part to
implement. Also, RTS does not allow explicit timers which are important for
verifying global timing properties.

The TTM/PAT tool already supports an assume-guarantee style of compo-
sitional reasoning (discussed in an extended report [8]). The use of LTL better
supports compositional reasoning than branching time logic [11]. Event actions
specified as before-after predicates allow us, in the future, to enhance composi-
tional reasoning using axiomatic methods (as in [2]).

In future work, we intend to explore the clock zone algorithms of RTS as
these are already directly available in the PAT toolset. We also intend to explore
the use of SMT solvers for axiomatic reasoning about TTMs. We expect that the
use of before-after predicates, for specifying the semantics of events in TTMs,
will facilitate this type of formal reasoning.

References

1. Jean-Raymond Abrial. Modeling in Event-B. Cambridge University Press, 2010.
2. K. Mani Chandy and Jayadev Misra. Parallel Program Design—a Foundation.

Addison-Wesley, 1989.
3. Leonardo de Moura, Sam Owre, Harald Ruess, John Rushby, N. Shankar, Maria

Sorea, and Ashish Tiwari. SAL 2. In CAV, LNCS 3114, pages 496–500, 2004.
4. Eunkyoung Jee, Insup Lee, and Oleg Sokolsky. Assurance cases in model-driven

development of the pacemaker software. In ISoLA 2010: Part II, volume 6416 of
LNCS, pages 343–356. Springer, 2010.

5. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. International
Journal on Software Tools for Technology Transfer, 1(1–2):134–152, 1997.

6. Mark Lawford, Vera Pantelic, and Hong Zhang. Towards integrated verification of
timed transition models. Fundamenta Informaticae, 70(1,2):75–110, 2006.

7. Jonathan S. Ostroff. Composition and refinement of discrete real-time systems.
ACM Transaction on Software Engineering Methodology, 8(1):1–48, 1999.

8. Jonathan S. Ostroff, Chen-Wei Wang, and Simon Hudon. TTM/PAT: A Tool for
Modelling and Verifying Timed Transition Models. Tech Report CSE-2013-05,
York University, 2013.

9. Jun Sun, Yang Liu, Jin Song Dong, Yan Liu, Ling Shi, and Étienne André. Mod-
eling and verifying hierarchical real-time systems using stateful timed CSP. ACM
Transaction on Software Engineering Methodology, 22(1):3:1–3:29, 2013.

10. Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards Flexible Verifi-
cation under Fairness. In CAV, LNCS 5643, pages 709 – 714, 2009.

11. Moshe Y. Vardi. Branching vs. linear time: Final showdown. In TACAS, LNCS
2031, pages 1–22, 2001.

114

On the cloud-enabled refinement checking of
railway signalling interlockings

Andrew Simpson and Jaco Jacobs

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD

United Kingdom

Abstract. Railway signalling systems have received a great deal of at-
tention from the formal methods community. One reason for this is that
the domain is relatively accessible; another is that the safety analyses to
be undertaken are often highly parallelizable. In this paper we describe a
‘cloud interface’ for the refinement checker, Failures Divergences Refine-
ment (FDR), which has been motivated and validated by an approach
to the modelling and analysis of railway signalling interlockings.

1 Introduction

Railway signalling systems have received a great deal of attention from the for-
mal methods community. Early contributions include those of Hansen [1], Mor-
ley [2], and Haxthausen and Peleska [3]. More recent contributions include those
of Kanso et al. [4], James and Roggenbach [5], and Haxthausen et al. [6]. In
many ways, this level of attention is unsurprising. First, the domain is relatively
accessible, enabling researchers to comprehend the problem at hand, and com-
municate their intentions and solutions to a receptive audience. Another reason
for this is the fact that the safety-criticality of the domain is attractive to for-
mal methods researchers [7]. The body of work is substantial: one only has to
consider the FMERail contributions from the late 1990s,1 the fact that such
applications are considered a success story for the formal methods community
(see, for example, [8]), and the forthcoming 2013 Workshop on a Formal Methods
Body of Knowledge for Railway Control and Safety Systems.2 We would argue
that another reason for this relative success is that the safety analyses that can
be undertaken are — depending on the model and the approach used — often
highly parallelizable. To this end, decomposition approaches have been proposed
by Winter and Robinson [9] and Simpson et al. [10], as well as others.

In this paper we revisit the contribution of [10] — which utilised Communi-
cating Sequential Processes (CSP) [11, 12] and the associated refinement checker
Failures Divergences Refinement (FDR) [13, 14] — as a means of motivating
and validating a cloud-enabled approach to refinement checking. Specifically,
we utilise the open source Eucalyptus framework [15] to demonstrate how the

1 See http://www2.imm.dtu.dk/˜dibj/fmerail/fmerail/.
2 See http://ssfmgroup.wordpress.com/.

115

theoretical decomposition approach described in [10] can be made practical —
enabling the checking of systems consisting of billions of states in a matter of
minutes.

The structure of the remainder of this paper is as follows. In Section 2 we
provide necessarily brief introductions to CSP, FDR, and our case study. Then,
in Section 3, we discuss our cloud-enabled interface for FDR. We present our
case study in Section 4. Finally, in Section 5, we summarise our contribution,
and outline our plans for future work in this area.

2 On CSP, FDR, and GDL

2.1 CSP and FDR

The language of CSP is a notation for describing the behaviour of concurrently-
evolving objects, or processes, in terms of their interaction with their environ-
ment. This interaction is modelled in terms of events: abstract, instantaneous,
synchronisations that may be shared between several processes. We denote the
set of all events within a given context as Σ; we can also give consideration to
the alphabet of a process — the events that it can perform.

We use compound events to represent communication. The event name c.x
may represent the communication of a value x on a channel named c. At the
event level, no distinction is made between input and output : the willingness
to engage in a variety of similar events — the readiness to accept input — is
modelled at the process level; the same is true of output, which corresponds to
an insistence upon a particular event from a range of possibilities.

A process describes the pattern of availability of certain events. The prefix
process e → P is ready to engage in event e; should this event occur, the
subsequent behaviour is that of the process P .

An external (or deterministic) choice of processes P 2 Q is resolved through
interaction with the environment — the first event to occur will determine the
subsequent behaviour. If this event was possible for only one of the two alter-
natives, then the choice will go on to behave as that process. If it was possible
for both, then the choice becomes non-deterministic. This form of choice exists
in an indexed form: 2 i : I • P(i) is an external choice between processes P(i),

where i ranges over the (finite) indexing set I .
We may denote input in one of two ways. The process c?x → P is willing

initially to accept any value (of the appropriate type) on channel c. Alternatively,
if we wish to restrict the set of possible input values to a subset of the type
associated with the channel c, then we may write 2 x : X • c.x → P .

There are various flavours of parallel combinations, but in this paper we limit
ourselves to only one: we write P ‖ Q to denote that the component processes
P and Q cooperate upon the events appearing in the alphabets of both P and
Q , with the events falling outside the intersection occurring independently.

The standard notion of refinement for CSP processes, which is defined in [16],
is based upon the failures/divergences model of CSP. In this model, each process

116

is associated with a set of behaviours: tuples of sequences and sets that record
the occurrence and availability of events.

The traces of a process P , denoted traces [P], are finite sequences of events
in which that process may participate in that order ; the failures of P , denoted
failures [P], are pairs of the form (tr ,X), such that tr is a trace of P and X is
a set of events which may be refused by P after the trace tr has been observed.
(We shall not concern ourselves with divergences.)

We write P vM Q when the process Q refines the process P under the model
M : Q is ‘at least as good as’ P . With respect to failures, the formal definition
is as follows:

P vF Q ⇔ traces [[Q]] ⊆ traces [[P]] ∧ failures [[Q]] ⊆ failures [[P]]

It is the relationship that exists between refinement and parallel composition
that makes the combination of CSP and FDR an attractive choice for the task
at hand: namely, it allows us to decompose large problems into a larger number
of smaller ones. In the following, we rely upon the fact that, if we know that
P vF Q holds, then — provided that R has nothing to say about the events of
P (that is to say, that its alphabet doesn’t contain any of those events) — we
can conclude that P vF Q ‖ R holds also.

The refinement checker FDR — which utilises the machine-readable dialect
of CSP, CSPM (see, for example, [17]) — uses this theory of refinement to
investigate whether a potential design meets its specification.

2.2 Solid State Interlocking

Given the safety-critical nature of railway interlockings, it is important to be
able to guarantee a range of safety properties. The complexity of automating
this task is characterised by Ferrari et al. thus:

“It is a well known fact that interlocking systems, due to their inherent
complexity related to the high number of variables involved, are not
amenable to automatic verification, typically incurring the state space
explosion problem.” [18]

Following [10], we consider Solid State Interlocking (SSI) [19] as a case study.
SSI is a computer-based control system, the system software of which can be
divided into generic and specific components. The latter (our concern) varies
between locations and describes the signalling functions for that particular in-
stance. We shall use the simple junction of Figure 1 to illustrate a manageable
(but still meaningful) subset of the components of interest.

The track is divided into segments by track circuits (TAA, etc.), with each
circuit being fitted with a detection device that informs the interlocking if a
specific segment is occupied (o) or clear (c). Sets of points help trains navigate
junctions and can be either controlled normal (cn) or controlled reverse (cr).
As an example (and with respect to Figure 1), if a train is travelling over track
circuit TAK towards track circuit TAJ and points P204 are in controlled reverse

117

TAE

TAD

TAC

TAB

TAA

TAK

TAJ

TAH

TAG

TAF

P202

P203

P201

P204

S10
S11

S12

S14

S13

S15

S20
S21

S22

S24

S25

S23

TBA

TCA

Fig. 1. The Open Alvey interlocking

position, then the train will follow the section of track covering track circuit
TCA. Conversely, if points P204 are in the controlled normal position, the train
will continue along track circuit TAJ towards TAH. Boolean checks may be
performed on a set of points: these checks indicate whether it is free to move
into the controlled normal (free to go normal) or controlled reverse (free to go
reverse) directions. A set of points is controlled free to go normal (cfn) if it
is free to go normal or if it is already in controlled normal; a set of points is
controlled free to go reverse (cfr) if it is free to go reverse or if it is already in
controlled reverse. A signal grants a requesting train entry onto the particular
section of track that is under its control. Signal S11, for example, is concerned
with track circuits TAD, TAC and TBA. A route is a section of track between
two signals: route R13 is the section of track between the entry signal S13 and
the exit signal S21, running over three track circuits (TAB, TAA and TAK) and
one set of points (P201). A route can be requested (req), set (s), or unset (xs).
Subroutes are sections of routes associated with track circuits; there may exist
several subroutes over a particular track circuit. Track circuit TAB, for example,
has three entry / exit points (TAA, TAC and TBA), which are labelled clockwise
from a 12:00 position. Entry (or exit) from (or to) circuit TBA is labelled A,
entry (exit) from (to) TAC is labelled B, and C is associated with entry (exit)
from (to) TAA. Subroute UAB AC is associated with track circuit TAB, with
entry from track circuit TBA and exit at track circuit TAA. A subroute can
either be locked (l) or free (f).

The Geographic Data Language (GDL) [20] describes conditions for setting
routes, releasing subroutes, etc. We restrict ourselves to a subset of GDL in the
following.

118

As an example, route R14 runs from signal S14 over track circuits TAD and
TAE and points P202. The condition for setting this route is written

Q14 if P202 cfn UAE AB f UAD AB f
then R14 s P202 cn UAD BA l UAE BA l

This tests if points P202 are controlled free to go normal and if subroutes
UAE AB and UAD AB are free. If they are, the route can be set: points P202
are set to controlled normal, and subroutes UAD BA and UAE BA are locked.

Our second type of conditional check pertains to subroutes becoming free.
Consider again route R14. When this route is set, subroutes UAD BA and
UAE BA are both locked. The condition for releasing UAE BA is written

UAE BA f if TAE c UAD BA f UAD CA f

Here, UAE BA becomes free when track circuit TAE is clear, and subroutes
UAD BA and UAD CA are both free.

There are minor variations on this pattern. For example, for UAD BA to
become free, track circuit TAD must be clear and route R14 must be unset:

UAD BA f if TAD c R14 xs

In [21] a number of safety invariants are listed, including:

1. If a route is set, then all of its subroutes are locked.
2. For every track circuit, at most one of subroutes passing over it should be

locked for a route at any time.
3. If a subroute over a track circuit containing points is locked for a route, then

the points are correctly aligned with that subroute.
4. If a track circuit containing points are occupied, then the points are locked.
5. If a subroute is locked for a route, then all subroutes ahead of it on that

route are also locked.

In [10, 21] an approach to the modelling, decomposition and analysis of GDL
representations is described. By taking advantage of the relationship that exists
between refinement and process composition in the failures model of CSP (as
outlined in Section 2.1), it is shown how safety checks of potentially billions of
states might be decomposed into hundreds of thousands of checks of hundreds or
thousands of states — giving rise to the potential for a parallelized refinement-
checking process. In the following, we show how that largely theoretical process
has been made practical via a cloud-enabled interface for FDR.

3 A cloud-enabled FDR

3.1 Eucalyptus

Cloud computing — an aggregate of multi-core, multi-processor, distributed
compute nodes — enables access to a range of configurable and reliable comput-
ing resources that can scale on demand, which, from an automated verification
perspective, is extremely desirable. The nature of such activity is bursty: large
quantities of computing resources, particularly memory and processing power,

119

are required only when checks are being executed. It follows that the notion of
having significant quantities of resources available ‘on demand’ sits comfortably
with automated verification: it provides a viable approach to alleviate the state
space explosion problem and has the potential to increase throughput. The no-
tion of computing resources as a utility that can be provisioned and relinquished
as needed is a powerful one: it creates the illusion of infinite computing resources,
available on-demand, with no prior commitment as to how long they are used.
Moreover, when the computing resources are no longer required, they can be
released without incurring any penalties.

Cloud computing provision is typically characterised as one of Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS). The first of these is our concern, with the core idea being that com-
puting resources should behave like physical hardware. Users select, control and
configure an entire virtualised server, consisting of the operating system ker-
nel, plus all required applications and data; administrative tasks are typically
automated. By having computing instances at such a low level we place few
limitations on the software that can ultimately be deployed in this context.

Eucalyptus is an open source cloud computing platform that provides an
API for provisioning, managing and relinquishing virtual machines in an IaaS
cloud [15]. A virtual machine, or instance, runs on top of a hypervisor, which
provides the capabilities necessary in order to provide an isolated computing
environment. When a user wishes to start a new instance in the Eucalyptus cloud,
they do so using a pre-defined machine image, which includes the operating
system and any other pre-built software required. It is possible to customise
these, create a new image, and then launch the instance using the custom image;
this is a Eucalyptus Machine Image (EMI).

Eucalyptus is composed of several components that interact through SOAP
interfaces. These components are: node controllers (NC in Figure 2), which con-
trol VM-related activities on a compute node; cluster controllers (CC), which
manage the node controllers within their clusters; storage controllers (SC), which
can be attached to an instance file system as a volume; Walrus, a service that
provides a mechanism for cloud-based persistent storage; and the cloud controller
(CLC), which facilitates the management of the cloud as a whole.

3.2 A cloud interface for FDR

Parallel model checking techniques typically partition the state space. Our ap-
proach involves partitioning the problem not at the level of the state space, but
at the level of a particular model. Conceptually, then, we have a CSP model, with
a requirement being that the model is such that it allows for checks (expressed
as refinements) to be broken down into several, smaller refinements. Once this
partitioning is achieved, the refinement checks can then be allocated to a farm
of processors to be either confirmed or refuted. (We readily acknowledge that
only certain classes of problem will be amenable to such an approach. In par-
ticular, its relevance is limited to safety properties; liveness properties could not
be checked in this way.)

120

SERVER 1C

CLC
CC

SC

Walrus

SERVER 2

NC
VM VM

VM VM

Fig. 2. Eucalyptus set-up

Thus, our process is as follows.

1. Take as input a text file containing a CSP problem description.
2. Automatically derive process definitions from the input file.
3. Automatically extract appropriate process definitions and generate refine-

ment checks by composing the process definitions relevant to the particular
refinement check.

4. Distribute the refinement checks to compute nodes (each running a server
version of FDR).

5. Collect the results and display the end result.

Our case study is characteristic of a problem that can be decomposed into
independent refinement checks and then distributed to various processing nodes:
input to the model checker is a text file representing data for a particular railway
interlocking; the CSP model is then automatically derived (along with refinement
checks) to assert various safety conditions. These checks can then be distributed
to the various processing nodes.

Eucalyptus is used to provide the private infrastructure as a service cloud.3

The set-up of Figure 2 consists of two physical machines: the first server is con-
figured as the cloud controller, cluster controller, Walrus and storage controller;
the second is configured as a node controller capable of booting virtual instances.
While this is a relatively straightforward set-up, the approach can be scaled to
incorporate as many node controllers as necessary.

The node controllers host the virtual instances which boot the machine image
containing the FDR binary. Sitting above FDR is the software used to coordinate
the scheduling of refinement checks and the processing of results. We utilise a
single master node and several slave nodes. The role of the master node is to dis-
tribute refinements to, and collect results from, slaves. Additionally, the master
node is responsible for processing the input file, deriving suitable process defini-
tions, and then extracting the relevant processes in order to form refinements;
these are then distributed to the slave nodes.
3 We use the Ubuntu Enterprise Cloud, which uses KVM as the default hypervisor.

121

A job consists of the relevant CSP code and a refinement to check; jobs are
stored in a jobqueue. The available pool of slaves are stored in a slavepool — a
circular list of slaves, keeping a record of whether the slave has been allocated a
job. The master node cycles through the list of slaves in a round-robin fashion. If
a slave has been previously allocated a job, it checks whether the job is complete.
If it is, the result is saved and the slave’s state is marked as idle; if it is not, the
slave is simply added to the back of the list, to be checked on the next cycle.
Alternatively, if a slave is free and there are jobs in the job queue, the slave is
allocated the next available job, and its state is set to busy. A slave node simply
waits for a job from the master. Additionally, it responds to periodic status
requests (from the master) as to whether a refinement check is complete or not.

The basic pseudocode executed on the master node is shown below.

while (length(jobQueue) > 0)

{

slave = slavepool.pop()

if (slave.isBusy()) /*refinement check assigned*/

{

refinement = slave.getRefinement()

if (refinement.complete())

{

result = refinement.getResult()

resultQueue.append(result)

slave.reset()

slavepool.append(slave)

}

else

{

/*not done*/

slavepool.append(slave)

}

}

else /*slave is idle*/

{

if (length(jobQueue>0))

{

job = jobQueue.pop()

slave.assignJob(job)

}

}

}

Four types of data are of interest to us: application data (the binary of the
model checker, and any other associated applications or scripts); input data
(CSPM scripts describing concurrent interactions of processes along with re-
finements we wish to prove or refute); non-persistent application-generated data

122

(data required only for as long as the CSPM script is loaded and a refinement
check is executed); and persistent application-generated data (the result of a
refinement check (and, if appropriate, counter-examples)).

4 The case study

We have used the approach of Section 3 to model various interlockings; as a
means of illustration, we consider the model of [21] and the example of Figure 1.

4.1 Translating GDL into CSP

To translate (ASCII-based) GDL models to CSPM , we have used the lexical
analyser and parser generator PLY (a lex–yacc parsing tool for Python).4

During the parsing phase, we record semantic information regarding the
GDL: this is used to construct process definitions and to decide which pro-
cesses need to be combined for a particular refinement check. In particular, we
record: the set of track circuits, Circuit ; the set of sets of points, Points; the
set of routes, Route; and the set of subroutes, Subroute. In addition, we build a
syntax tree that relates the various interlocking components; we also construct
various functions that relate different interlocking components. For example, the
following functions relate track circuits to the subroutes associated with them,
return the set of all sets of points associated with a given route, and map each
route to its constituent sequence of subroutes, respectively:

subroutesOfCircuit : Circuit → P Subroute
pointsOfRoute : Route → P Points
subroutesOfRoute : Route → seq Subroute

The translation tool reads the whole file and then translates it, which involves
building tree structures. Once all the input is parsed we can then transform this
into corresponding CSP process definitions.

4.2 The CSP model

The components involved in setting route R14 are the subroutes UAE AB,
UAD AB, UAD BA and UAE BA, and points P202. The process R14true
characterises the preconditions for setting route R14: points P202 should be
controlled free to go normal, and subroutes UAD AB and UAE AB should be
free. If any of the conditions necessary to set the route becomes false, then
the process state is updated and the process subsequently behaves as R14false.
Should there be a request to set the route, points P202 are locked in the con-
trolled normal position, UAD BA and UAE BA are both locked, and route R14
is set. The process R14false models when it is not possible to set route R14, i.e.
when one or more of the conditional checks evaluates to false. The variable x

4 See http://www.dabeaz.com/ply.

123

represents the state of points P202 (controlled free to go normal or not); y and
z are concerned with the states of subroutes UAE AB and UAD AB (free or
locked). Changes in state for P202, UAE AB and UAD AB may be observed.
Once all conditions are met, the process behaves as R14true.

R14true =
routeState.R14.req → pointPosition.P202.cn →

subrouteState.UAD BA.l → subrouteState.UAE BA.l →
routeState.R14.s → R14true

2

pointState.P202.cfn.false → R14false(false, f , f)
2

subrouteState.UAE AB .l → R14false(true, l , f)
2

subrouteState.UAD AB .l → R14false(true, f , l)

R14false(x , y , z) =
if x = true ∧ y = f ∧ z = f then R14true
else (pointState.P202.cfn?i → R14false(i , y , z)

2

subrouteState.UAE AB?i → R14false(x , i , z)
2

subrouteState.UAD AB?i → R14false(x , y , i))

In the process UAE BAlocked , variable x represents the state of track circuit
TAE, and y and z represent the states of UAD BA and UAD CA respectively.
If the conditions are met, the subroute can be freed and the process then behaves
as UAE BAfree. The process also allows changes to the relevant components,
updating the relevant variable accordingly.

UAE BAlocked(x , y , z) =
if x = c ∧ y = f ∧ z = f then

subrouteState.UAE BA.f → UAE BAfree(x , y , z)
else (circuitState.TAE?i → UAE BAlocked(i , y , z)

2

subrouteState.UAD BA?i → UAE BAlocked(x , i , z)
2

subrouteState.UAD CA?i → UAE BAlocked(x , y , i))

UAE BAfree(x , y , z) =
subrouteState.UAE BA.l → UAE BAlocked(x , y , z)
2

circuitState.TAE?i → UAE BAfree(i , y , z)
2

subrouteState.UAD BA?i → UAE BAfree(x , i , z)
2

subrouteState.UAD CA?i → UAE BAfree(x , y , i)

124

Subroute-release data depending on a route rather than subroutes (which is
usually the case for the first subroute of a route) are modelled slightly differently.
For example, in the case of subroute UAD BA we have the following:

UAD BAlocked(x , y) =
if x = c ∧ y = xs then

subrouteState.UAD BA.f → UAD BAfree(x , y)
else (circuitState.TAD?i → UAD BAlocked(i , y)

2

2 i : {req , xs} • routeState.R14.i → UAD BAlocked(x , i))

UAD BAfree(x , y) =
subrouteState.UAD BA.l → UAD BAlocked(x , y)
2

circuitState.TAD?i → UAD BAfree(i , y)
2

2 i : {req , xs} • routeState.R14.i → UAD BAfree(x , i)

4.3 Decomposing the problem

We now consider how our model can be decomposed into a series of independent
checks by considering the second of our safety invariants: “For every track circuit,
at most one of subroutes passing over it should be locked for a route at any time.”

A subroute becomes locked when a route passing over it is set. Given a track
circuit, t , we need take into account only the route-setting data for those routes
which may lock subroutes over running it. As an example, four routes travel
over track circuit TAK: R13, R15, R22, and R24, with the route-setting data for
these routes being as follows.

Q13 if P201 cfr UAA BA f UAB CA f
then R13 s P201 cr UAB AC l UAA AB l UAK AB l

Q15 if P201 cfn UAA BA f UAB CB f
then R15 s P201 cn UAB BC l UAA AB l UAK AB l

Q22 if P204 cfr UAJ CB f UAK AB f
then R22 s P204 cr UAJ BC l UAK BA l UAA BA l

Q24 if P204 cfn UAJ CA f UAK AB f
then R24 s P204 cn UAJ AC l UAK BA l UAA BA l

Only routes R22 and R24 can lock subroute UAK BA, and, before this sub-
route can be locked by either, subroute UAK AB must be free. As such, we
need take no other processes into account in ensuring that UAK AB and then
UAK BA cannot be locked: if subroute UAK AB is locked, then neither route
R22 nor route R24 can be set, and, therefore, subroute UAK BA cannot be
locked.

125

Examining the conditions for routes R13 and R15 to be set, we see that before
either route can be set, subroute UAA BA must be free. The subroute-release
data for this subroute is given by

UAA BA f if TAA c UAK BA f

It follows that we need take into account only processes representing route-
setting data for routes R13 and R15, and subroute-release data for subroute
UAA BA to ensure that UAK BA and then UAK AB cannot be locked.

In this case, then, only five processes need to be considered to ensure that
safety invariant 1 holds for track circuit TAK. The justification for this is based
upon the fact that the events with which we are concerned can only ever occur
with the co-operation of processes representing route-setting data for routes
R13, R15, R22 and R24. Composition with further processes will only serve to
reduce the set of possible behaviours for these components, while expanding the
state space of the check to be performed. Thus, the task of checking this safety
invariant reduces to one of tractable size — as shown in Table 1. (Track circuits
TAE and TAF do not appear as they are both associated with exactly one route.)
The automation of this dependency-establishing process is at the heart of our
approach.

4.4 Safety invariants in CSP

We now demonstrate how we can model safety invariants. We illustrate this via
the first of our invariants: if a route is set, then all of its subroutes are locked.

For any route r , we define

U = {u : Subroute | u ∈ set(subroutesOfRoute(r))}

where set converts a sequence into a set.
We represent the invariant as a process thus:

S1(r ,U , locked) =
if locked = U then

2 u : locked • subrouteState.u.f → S1(r ,U , locked \ {u})
2

2 routeState.r .s → routeState.r .xs → S1(r ,U , locked)

else

2 u : U \ locked • subrouteState.u.l → S1(r ,U , locked ∪ {u})
2

2 u : locked • subrouteState.u.f → S1(r ,U , locked \ {u})

It is clear that we can only set a route r when all the subroutes along that route
are locked; we also require the route to become unset before any associated
subroutes can become free.

With respect to our CSP model, we need to derive a suitable implementa-
tion process, which, as per the previous subsection, involves extracting relevant

126

Track circuit States

TAA 14592
TAB 3532
TAC 232
TAD 3312
TAG 3312
TAH 232
TAJ 3532
TAK 14592
TBA 232
TCA 232

Table 1. The complexity of verifying invariant 2 for our simple interlocking

process descriptions from the GDL and then combining them using parallel com-
position. The following determines the necessary processes to be composed for
r ∈ Route.

1. Include the processes representing route-setting data for r .
2. Consider all processes related to subroute-release data for each subroute

along r , i.e. for each element in the set set(subroutesOfRoute(r)).
3. The process Train(r , subroutesOfRoute(r), pointsOfRoute(r)) models a train

moving along route r .

It is the first of these steps — “include the processes representing route setting
data for r” — that allows us to decompose the checking of safety invariant 1
into smaller, independent checks. Consider, for example, route R10A, where

set (subroutesOfRoute (R10A)) = {UAB CA,UBA BA}

Combining the above, we have

I1 (R10A) =
R10A ‖ UAB CA ‖ UBA BA ‖ Train(R10A, 〈TAB ,TBA〉, {P201})

as the implementation process for safety invariant 1 and route R10A. Via FDR,
we can verify

S1 (R10A, {UAB CA,UBA BA}, {UAB CA,UBA BA}) vF I1 (R10A)

Crucially, as all of the relevant communications are present, it follows that

S1 (R10A, {UAB CA,UBA BA}, {UAB CA,UBA BA}) vF System

By verifying similar refinements for the other routes, we can assert that safety
invariant 1 holds for that interlocking. The proof of this relies on the fact that all
relevant behaviours relevant to the verification of the safety invariant for route
r can be observed in the implementation process I1 (r) (see [21]).

127

The round-trip execution times for checking each of the 16 routes of Figure 1
are typically in the range 3–5 seconds; this results in a cumulative time of under 1
minute to check this safety invariant for the example interlocking, which consists
of 4.84662992×1022 states;5 the cumulative times for the other safety invariants
are of a similar order.

5 Conclusions

We have described how a cloud-enabled interface for FDR gives rise to a means
of parallelized safety checks on railway interlockings. For the sake of readabil-
ity, we have based our account on a relatively simple scenario; [21] shows how
the theoretical approach — which we have now made practical — is scalable
to ‘real-life’ interlockings. We have concentrated on CSP and FDR, rather than
other approaches, as the relationship between parallel composition and refine-
ment means that it is feasible to decompose large problems into smaller ones in
an elegant fashion — making it an exceptional candidate for a cloud computing
style approach.

One of the biggest challenges of model checking in a practical setting is
handling the enumeration of the state space in an efficient manner. Various
approaches to alleviate the state space explosion problem are known from the
literature: partial order reduction techniques (see, for example, [22]) are one ap-
proach; the local search approach proposed by Roscoe et al. [23], whereby states
spaces are partitioned into ‘blocks’, is another. An experimental parallel imple-
mentation of FDR is described in [24]: states are randomly allocated between
different computing nodes using a hash function; the state space is explored using
a breadth-first search algorithm, and at the end of each level successor states are
exchanged between the compute nodes. An alternative approach is that taken by
FDR Explorer [25], whereby an API “makes possible to create optimised CSP
code to perform refinement checks that are more space or time efficient, enabling
the analysis of more complex and data-intensive specifications.”

Our approach involves partitioning the problem not at the level of the state
space, but at the level of the CSP model — which means it is applicable only
in certain contexts, with one being the scenario considered in this paper. All
of the refinement checks are generated automatically and subsequently sent to
slave nodes for processing. There are clearly limitations, though. Crucially, we
rely upon the existence of models being of a form that can be decomposed into
smaller subproblems; once this partitioning is done, the refinement checks can
then be allocated to a farm of processors to either be confirmed or refuted. While
deconstructing the problem at the model level in the way that we have done can
work for safety properties, it is of no use when considering liveness properties,
for example.

The initial prototype implementation of the software that schedules the
checks between processing nodes can be extended in several ways. At the mo-

5 12 track circuits, 4 points, 16 routes and 30 subroutes, giving rise to 212×44×316×230

states.

128

ment, there is a single point of failure: should the master node die, there would
be no way to schedule more refinement checks or to collect the results. Another
point to consider would be the costing model used by the cloud provider: given
that virtual instances are priced per hour, if many of the refinement checks are
similar (as per the case study of this paper), we can try and optimise the cost
by considering the execution time of a single check. The most pressing item of
future work, however, is the consideration of further case studies — with a view
to identifying other classes of problems that may benefit from this approach.
Initial ares of interest in this respect are asynchronous hardware circuits and
automatic test case generation.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful com-
ments and constructive criticisms.

References

1. Hansen, K.M.: Validation of a railway interlocking model. In Naftalin, M., Denvir,
T., Bertran, M., eds.: Proceedings of the 2nd International Symposium of Formal
Methods Europe (FME 1994). Volume 873 of Lecture Notes in Computer Science.
Springer (1994) 582–601

2. Morley, M.J.: Safety in railway signalling data: a behavioural analysis. In Joyce,
J., Seger, C., eds.: Proceedings of the 6th Annual Workshop on Higher Order Logic
and its Applications. Volume 780 of Lecture Notes in Computer Science. Springer
(1994) 465–474

3. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Transaction on Software Engineering 26(8) (2000)
687–701

4. Kanso, K., Moller, F., Setzer, A.: Automated verification of signalling principles
in railway interlocking systems. Electronic Notes in Theoretical Computer Science
250(2) (2009) 19–31

5. James, P., Roggenbach, M.: Automatically verifying railway interlockings using
SAT-based model checking. In: Proceedings of the 10th International Workshop
on Automated Verification of Critical Systems (AVoCS 2010), Electronic Commu-
nication of the European Association of Software Science and Technology volume
35 (2010)

6. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construction
and verification of railway control systems. Formal Aspects of Computing 23(2)
(2011) 191–219

7. Fantechi, A., Fokkink, W., Morzenti, A.: Some trends in formal methods applica-
tions to railway signalling. In Gnesi, S., Margaria, T., eds.: Formal Methods for
Industrial Critical Systems: A Survey of Applications. John Wiley & Sons (2013)
63–82

8. Bacherini, S., Fantechi, A., Tempestini, M., Zingoni, N.: A story about formal
methods adoption by a railway signaling manfacturer. In Misra, J., Nipkow, T.,
Sekerinski, E., eds.: Proceedings of the 14th International Symposium on Formal
Methods (FM 2006). Volume 4085 of Lecture Notes in Computer Science. Springer
(2006) 179–189

129

9. Winter, K., Robinson, N.J.: Modelling large interlocking systems and model check-
ing small ones. In Oudshoorn, M., ed.: Proceedings of the 26th Australasian Com-
puter Science Conference (ACSC 2003), Australian Computer Science Communi-
cations volume 16 (2003) 309–316

10. Simpson, A.C., Woodcock, J.C.P., Davies, J.W.M.: The mechanical verification of
Solid State Interlocking geographic data. In Groves, L., Reeves, S., eds.: Proceed-
ings of Formal Methods Pacific 1997. Springer (1997) 223–242

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
12. Roscoe, A.W.: Understanding Concurrent Systems. Springer-Verlag (2010)
13. Roscoe, A.W.: Model checking CSP. In Roscoe, A.W., ed.: A Classical Mind:

Essays in Honour of C. A. R. Hoare. Prentice Hall (1994)
14. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M.,

Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to
check 1020 dining philosophers for deadlock. In: Proceedings of the First Inter-
national Workshop on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 1995). Volume 1019 of Lecture Notes in Computer Science.
Springer (1995) 133–152

15. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: The Eucalyptus open-source cloud-computing system. In: Pro-
ceedings of the 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGRID 2009). (2009) 124–131

16. Brookes, S.D., Roscoe, A.W.: An improved failures model for communicating
processes. In Brookes, S.D., Roscoe, A.W., Winskel, G., eds.: Proceedings of the
NSF-SERC Seminar on Concurrency. Volume 197 of Lecture Notes in Computer
Science. Springer (1985) 281–305

17. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall (1997)
18. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking

control tables. In: Proceedings of Formal Methods for Automation and Safety
in Railway and Automotive Systems 2010 (FORMS/FORMAT 2010). Springer
(2011) 107–115

19. Cribbens, A.: Solid State Interlocking (SSI): An integrated electronic signalling
system for mainline railways. IEE Proceedings 134(3) (1987) 148–158

20. British Rail Research: SSI data preparation guide. Published by British Railways
Board. ELS-DOC-3080, Issue K of SSI8003-INT and supplements (1990)

21. Simpson, A.C.: Safety through security. DPhil thesis, Oxford University Comput-
ing Laboratory (1996)

22. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer-Verlag (1996)

23. Roscoe, A.W., Armstrong, P.J., Pragyesh: Local search in model checking. In:
Proceedings of the 7th International Symposium on Automated Technology for
Verification and Analysis (ATVA 2009). Volume 5799 of Lecture Notes in Computer
Science., Springer (2009) 22–38

24. Goldsmith, M.H., Martin, J.M.R.: The parallelisation of FDR. In: Proceedings of
Workshop on Parallel and Distributed Model Checking (PDMC 2002). (2002)

25. Freitas, L., Woodcock, J.C.P.: FDR Explorer. Formal Aspects of Computing
21(1–2) (2009) 133–154

130

Counterexample Generation for
Hybrid Automata

Johanna Nellen1, Erika Ábrahám1, Xin Chen1, and Pieter Collins2

1 RWTH Aachen University, Germany
2 Maastricht University, The Netherlands

Abstract. The last decade brought us a whole range of over-approxima-
tive algorithms for the reachability analysis of hybrid automata, a widely
used modeling language for systems with combined discrete-continuous
behavior. Besides theoretical results, there are also some tools available
for proving safety in the continuous time domain. However, if a given
set of critical states is found to be reachable, these tools do not provide
counterexamples for models beyond timed automata.
This paper investigates the question whether and how available tools
can be used to generate counterexamples, even if this functionality is
not directly supported. Using the tools SpaceEx and Flow*, we discuss
possibilities to solve our task with and without modifying the tools’
source code, report on the effort and the efficiency of implementation, and
propose a simulation-based approach for the validation of the resulting
(possibly spurious) counterexamples.

1 Introduction

Hybrid systems are systems that exhibit both continuous and discrete behavior.
Typical examples are physical systems regulated by discrete controllers, e.g., au-
tomotive control systems or controlled chemical plants. Hybrid systems are often
modeled as hybrid automata [1], for which the reachability problem is undecid-
able. Despite undecidability and driven by the fact that most hybrid systems
in industrial context are safety-critical, a lot of effort was put into the devel-
opment of reachability analysis techniques for hybrid automata. State-of-the-art
tools like SpaceEx [2] and Flow* [3] try to compute an over-approximation of
the reachable state space and can therefore be used to prove safety, i.e., that
a given set of unsafe states cannot be reached from a set of initial states in a
given model. However, if the over-approximation of the reachable states contains
unsafe states then no conclusive answer can be given.

Counterexamples in form of system runs leading to unsafe states would be
extremely valuable, even if they are spurious, i.e., if they were considered in the
analysis but are not possible in the given model. For safe models they could
help to reduce the approximation error in the analysis efficiently, whereas for
unsafe models they could provide important information about the source of
the critical system behavior. Counterexamples would enable the application of

131

counterexample-guided abstraction refinement (CEGAR) techniques and could
also play an important role in controller synthesis.

Unfortunately, none of the available tools for hybrid automata reachability
analysis with continuous time domain computes counterexamples. It is surprising
since internally they possess sufficient information to generate at least a coarse
over-approximation of a counterexample in form of a sequence of jumps (i.e.,
changes in the discrete part of the system state), augmented with time intervals
over-approximating the time durations between the jumps. In this paper we

1. examine whether it is possible to either use augmented system models or to
extract information from the output of the SpaceEx tool such that we can
synthesize over-approximations of counterexamples;

2. study how the efficiency can be improved by extending the functionality of
the Flow* tool internally, i.e., by making modifications to the source code;

3. develop a simulation-based approach to validate the counterexample over-
approximations, i.e., to determine unsafe paths in the over-approximation.

We have chosen SpaceEx and Flow* for our experiments because on the one
hand SpaceEx is one of the most popular hybrid automata reachability analysis
tools and on the other hand some of the authors belong to the implementation
team of Flow*, i.e., the modification of the source code of Flow* could be
done safely. Unfortunately, counterexample generation without tool extension is
unsatisfactory: we need either expensive additional analysis runs for enlarged
systems or parsing hidden information from debug output. The results demon-
strate the need to extend the functionality of available analysis tools to gener-
ate counterexamples internally. However, even if that task is done, the results
strongly over-approximate counterexamples, whose existence can be indicated
but not proven. Thus we need novel methods to refine and validate the results,
posing highly challenging problems in both theory and practice.

Related work In this paper we focus on reachability analysis techniques for
continuous-time hybrid automata that apply a fixed-point-based forward-reach-
ability iteration [1]. Such algorithms need two main ingredients: (a) A tech-
nique to represent state sets and to compute certain operations on them like
union, intersection, Minkowski sum, etc. All the available tools work with over-
approximative representations and computations. Popular approaches use either
geometric objects like hyperrectangles [4], polyhedra [5–9], zonotopes [10, 11],
orthogonal polyhedra [12] or ellipsoids [13], or symbolic representations like sup-
port functions [14, 15] or Taylor models [16, 17]. The choice of the representation
is crucial, as it strongly influences the approximation error and the efficiency
of the computations. (b) A method to compute one-step-successors of state sets
both for continuous flow and discrete jumps. A flowpipe is an over-approximation
of the states that are reachable from a given initial set of states by letting time
progress within a certain maximal time horizon. To compute a flowpipe, the
maximal time horizon is often divided into smaller intervals and the flowpipe is
represented as a (finite) union of state sets (flowpipe segments), each covering
one of the smaller intervals [5].

132

The analysis tools HyTech [6], PHAVer [7] and the Multi-Parametric Tool-
box [8] use convex polyhedra for the over-approximative representation of state
sets, SpaceEx [2] additionally allows the usage of support functions. In [18], the
state sets are over-approximated by level sets. The tool d/dt [19] uses grid paving
as over-approximations. MATISSE [20] over-approximates state sets by zono-
topes. The MATLAB Ellipsoidal Toolbox [21] supports the over-approximative
representation of sets by ellipsoids, Flow* by Taylor models. In Ariadne [22],
the state sets may be over-approximated by Taylor models or grid pavings. In
contrast to the other tools, Flow*, HyTech, PHAVer, Ariadne and d/dt also
support the analysis of non-linear hybrid automata (with non-linear differential
equations).

None of these tools supports the generation of counterexamples. There are
some works [23, 24] related to counterexample generation for hybrid systems, but
they are mostly devoted to CEGAR approaches for restricted classes of hybrid
automata like, e.g., (initialized) rectangular automata.

Outline After some preliminaries in Section 2, we describe in the Sections 3
and 4 how we can compute over-approximations of counterexamples for unsafe
models, whose validation is discussed in Section 5. Section 6 concludes the paper.

2 Preliminaries

on
ṫ = 1
t ≤ 22

off
ṫ = −0.5
t ≥ 18

t ≥ 21

t ≤ 19

t = 20

Fig. 1. The thermostat example

By N, Z and R we denote the set of all natu-
ral (with 0), integer and real numbers, respec-
tively, by R≥0 the non-negative reals, and use
N>0 = N\{0}. For some n ∈ N>0, let Var =
{x1, . . ., xn} be an ordered set of variables over
R. We use the notation x = (x1, . . ., xn), and
denote by Var ′ and ˙Var the renamed vari-
able sets {x′1, . . ., x′n} and {ẋ1, . . ., ẋn}, respec-
tively. Given a real-arithmetic formula φ over
Var, its satisfaction set is JφK = {v ∈ Rn | φ[v/x] = true}; we call φ convex if JφK
is convex. Let Φ(Var) be the set of all quantifier-free convex real-arithmetic for-
mulas (so-called predicates) over Var. A predicate is linear if it can be expressed
in linear real arithmetic.

Definition 1 (Syntax of hybrid automata). A hybrid automaton (HA)
is a tuple H = (Loc,Var,Edge,Dyn, Inv, Init) with the following components:

– Loc is a finite set of locations or modes.
– Var = {x1, . . ., xn} is a finite ordered set of variables over R. A valuation v =

(v1, . . ., vn) ∈ Rn defines for each i = 1, . . ., n the value vi for xi. A state is a
mode-valuation pair σ = (l, v) ∈ Loc× Rn = Σ.

– Edge ⊆ Loc×Φ(Var∪Var ′)×Loc is a finite set of edges. For an edge e = (l, φ, l′) ∈
Edge we call l (l′) the source (target) mode of e and φ its transition relation.

– Dyn : Loc→ Φ(Var ∪ ˙Var) assigns a dynamics to each mode.
– Inv : Loc→ Φ(Var) assigns an invariant to each mode.
– Init : Loc→ Φ(Var) specifies the initial valuations for each mode.

133

(
ẋ1
ẋ2

)
=

(
v1
v2

)
and

(
v̇1
v̇2

)
=

(
−1.8 −0.2
−0.2 −1.8

)(
v1
v2

)
+

(
b1
b2

)
in each location

with b1, b2 as specified inside the location, c = 0.7017

`1
b1 = 1 b2 = 0
x1 ∈ [0, 1]
∧x2 ∈ [0, 1]

`2
b1 = −1 b2 = 0
x1 ∈ [2, 3]
∧x2 ∈ [0, 1]

`3
b1 = −1 b2 = 0
x1 ∈ [3, 4]
∧x2 ∈ [0, 1]

`4
b1 = 0 b2 = 1
x1 ∈ [0, 1]
∧x2 ∈ [1, 2]

`5
b1 = −c b2 = c
x1 ∈ [1, 2]
∧x2 ∈ [1, 2]

`6
b1 = −c b2 = −c

x1 ∈ [2, 3]
∧x2 ∈ [1, 2]

`7
b1 = −c b2 = −c

x1 ∈ [3, 4]
∧x2 ∈ [1, 2]

`8
b1 = −1 b2 = 0
x1 ∈ [1, 2]
∧x2 ∈ [2, 3]

`9
b1 = 0 b2 = −1
x1 ∈ [2, 3]
∧x2 ∈ [2, 3]

`10
b1 = 0 b2 = −1
x1 ∈ [3, 4]
∧x2 ∈ [2, 3]

`11
b1 = 0 b2 = −1
x1 ∈ [0, 1]
∧x2 ∈ [3, 4]

`12
b1 = −1 b2 = 0
x1 ∈ [1, 2]
∧x2 ∈ [3, 4]

`13
b1 = 0 b2 = −1
x1 ∈ [2, 3]
∧x2 ∈ [3, 4]

`14
b1 = 0 b2 = −1
x1 ∈ [3, 4]
∧x2 ∈ [3, 4]

x1 ∈ [3, 3.8],
x2 ∈ [3, 4],
v1 ∈ [−0.1, 0.1],
v2 ∈ [−0.8,−0.5]

x1 = 3
∧v1 ≥ 0

x1 = 1
∧v1 ≥ 0

x1 = 2
∧v1 ≥ 0

x1 = 3
∧v1 ≥ 0

x1 = 2
∧v1 ≥ 0

x1 = 3
∧v1 ≥ 0

x1 = 1
∧v1 ≥ 0

x1 = 2
∧v1 ≥ 0

x1 = 3
∧v1 ≥ 0

x1 = 3
∧v1 ≤ 0

x1 = 1
∧v1 ≤ 0

x1 = 2
∧v1 ≤ 0

x1 = 3
∧v1 ≤ 0

x1 = 2
∧v1 ≤ 0

x1 = 3
∧v1 ≤ 0

x1 = 1
∧v1 ≤ 0

x1 = 2
∧v1 ≤ 0

x1 = 3
∧v1 ≤ 0

x2 = 3
∧v2 ≤ 0

x2 = 3
∧v2 ≤ 0

x2 = 3
∧v2 ≤ 0

x2 = 2
∧v2 ≤ 0

x2 = 2
∧v2 ≤ 0

x2 = 2
∧v2 ≤ 0

x2 = 1
∧v2 ≤ 0

x2 = 1
∧v2 ≤ 0

x2 = 1
∧v2 ≤ 0

x2 = 3
∧v2 ≥ 0

x2 = 3
∧v2 ≥ 0

x2 = 3
∧v2 ≥ 0

x2 = 2
∧v2 ≥ 0

x2 = 2
∧v2 ≥ 0

x2 = 2
∧v2 ≥ 0

x2 = 1
∧v2 ≥ 0

x2 = 1
∧v2 ≥ 0

x2 = 1
∧v2 ≥ 0

Fig. 2. The navigation benchmark

Since we do not use the parallel composition of hybrid automata in this paper,
for simplicity we skipped composition-relevant parts in the above definition.

A toy example of a thermostat is depicted graphically in Figure 1. The rect-
angles represent modes; their names, dynamics and invariants are specified inside
the rectangle. Initial valuations are specified on an incoming edge of a given mode
without a source mode; a missing incoming edge stays for the initial condition
false. Figure 2 shows the navigation benchmark [25], which we use later on for
experiments. It models an object moving in the R2 plane. The velocity (v1, v2)
of the object depends on its position (x1, x2) in a grid. For some experiments we
add a parameter ε to the navigation benchmark to enlarge the satisfaction sets
of guards and invariants by replacing all upper bounds ub (lower bounds lb) by
ub + ε (lb− ε).

Definition 2 (Semantics of hybrid automata). The operational semantics
of a HA H = (Loc,Var,Edge,Dyn, Inv, Init) with Var = {x1, . . ., xn} is given by
the rules of Figure 3. The first rule specifies time evolution (time steps), the
second one discrete mode changes (jumps).

134

l ∈ Loc v, v′ ∈ Rn t ∈ R≥0 f : [0, t]→ Rndifferentiable ḟ = df
dt

f(0) = v f(t) = v′ ∀t′ ∈ [0, t]. f(t′) ∈ JInv(l)K ∧ (f(t′), ḟ(t′)) ∈ JDyn(l)K
Time

(l, v)
t→ (l, v′)

l, l′ ∈ Loc v, v′ ∈ Rn v ∈ JInv(l)K v′ ∈ JInv(l′)K e = (l, φ, l′) ∈ Edge (v, v′) ∈ JφK
Jump

(l, v)
e→ (l′, v′)

Fig. 3. Operational semantics rules for hybrid automata

Let →=
⋃

t∈R≥0

t→ ∪⋃e∈Edge
e→. A path of H is a (finite or infinite) se-

quence (l0, v0) → (l1, v1) → For an initial path we additionally require
v0 ∈ JInit(l0)K. A state (l, v) ∈ Σ is called reachable in H if there is an initial
path (l0, v0)→ (l1, v1)→ . . . of H and an index i ≥ 0 such that (li, vi) = (l, v).

Please note that each reachable state (l, v) of H can be reached via an initial

path of H of the form (l0, v0)
t0→ (l0, v

′
0)

e0→ . . .(ln−1, vn−1)
tn−1→ (ln−1, v′n−1)

en−1→
(ln, vn)

tn→ (ln, v
′
n) = (l, v) with alternating time steps and jumps for some n ∈ N.

In the following we consider only paths of this form.
A trace e0, e1, . . . describes a sequence of jumps with ei ∈ Edge such that the

target mode of ei equals the source mode of ei+1 for all i ∈ N. If we can assume
that there is at most one jump between each mode pair, we also identify traces
by the sequence l0, l1, . . . of modes visited. Such a trace represents the set of all

paths (l0, v0)
t′′0→ (l0, v

′
0)

e0→ (l1, v1)
t′′1→ (l1, v

′
1)

e1→ We say that those paths are
contained in the symbolic path.

A timed trace e0, [t0, t
′
0], e1, [t1, t

′
1], . . . annotates a trace e0, e1, . . . with time

intervals and represents the set of all paths (l0, v0)
t′′0→ (l0, v

′
0)

e0→ (l1, v1)
t′′1→

(l1, v
′
1)

e1→ . . . with t′′i ∈ [ti, t
′
i] for all i ∈ N. We say that e0, [t0, t

′
0], e1, [t1, t

′
1], . . .

is a timed trace of the represented paths, which are contained in the timed trace.
Given a HA H and a set B of unsafe states of H, the reachability problem

poses the question whether the intersection of B with the reachable state set
of H is empty, i.e., whether H is safe. If H is unsafe, a counterexample is an
initial path of H leading to an unsafe state from B. For models with weaker
expressivity, for example hybrid automata defined by linear predicates and con-
stant derivatives (i.e., dynamics of the form

∧
x∈Var ẋ = cx with cx ∈ Z for all

x ∈Var), the bounded reachability problem is decidable and, for unsafe models,
counterexamples can be generated (e.g., by bounded model checking using SMT
solving with exact arithmetic). However, the computation of counterexamples
for general hybrid automata is hard. Theoretically, it could be done by (incom-
plete) under-approximative reachability computations, but currently there are
no techniques available for this task.

In this paper we propose an approach to generate and refine presumable
counterexamples, which are timed traces that might contain a counterexample;
if a presumable counterexample does not contain any counterexample then we
say that it is spurious.

135

3 Generating Traces for Presumable Counterexamples

Existing hybrid automata analysis tools like SpaceEx offer as output options
either the computed over-approximation of the reachable state space, its in-
tersection with the unsafe states, or just the answer whether unsafe states are
reachable or not (in the over-approximation). However, in contrast to tools for
discrete automata, none of the tools for hybrid automata provides counterexam-
ples.

In this section we show how a trace explaining the reachability of unsafe states
can be computed. We present three different approaches: The first approach aug-
ments hybrid automata with auxiliary variables to make observations about the
computation history of the analysis. The second approach can be used if the
analysis tool outputs sufficient information about the paths that have been pro-
cessed during the analysis. The third approach suggests to implement some new
functionalities efficiently in existing tools. In our experiments we used SpaceEx
v0.9.7c, VMware server, and the latest Flow* version but with the proposed
extensions.

3.1 Approach I: Model Augmentation

We extend the model with new variables to make book-keeping about traces
that lead to unsafe states in the reachability analysis. First we augment the
model and analyze the augmented system to observe the number of jumps until
an unsafe state is reached. Then we augment and analyze an unrolled model to
observe unsafe traces.

Determining the counterexample length We augment the model and analyze it to
gain information about the length of paths leading to unsafe states. We introduce
a counter tr with initial value 0, define ṫr=0 in each mode, and let each jump
increase the counter value by one.

However, the unboundedness of tr would render the fixed-point analysis to
be non-terminating. To bound tr from above, we define a constant maxtr and
either extend the invariants or the edge guards to forbid higher values.

The value of maxtr should be guessed, and in case the analysis of the aug-
mented model reports safety, increased. A possible guess could be the number of
iterations during the fixed-point analysis of the original model, which is reported
by SpaceEx and specifies how many times the tool computed a (time+jump) suc-
cessor of a state set. To get a smaller value (and thus shorter counterexamples
with less computational effort), the reachability analysis could be stopped when
an unsafe state is reached. Unfortunately, SpaceEx does not offer this option.

Definition 3 (Guard and invariant augmentation). Let H = (Loc,Var,
Edge, Dyn, Inv, Init) be a HA and maxtr ∈ N. The guard augmentation of H is
the HA Hguard = (Loc,Var ∪ {tr},Edge′,Dyn′, Inv, Init ′) with

– Edge′ = {(l, (φ ∧ tr ≤ maxtr − 1 ∧ tr′=tr+1), l′) | (l, φ, l′) ∈ Edge};
– Dyn′(l) = (Dyn(l) ∧ ṫr=0) for each l ∈ Loc;
– Init ′(l) = (Init(l) ∧ tr=0) for each l ∈ Loc.

136

on
ṫ=1 ∧ ṫr=0

t≤22

off
ṫ=− 0.5 ∧ ṫr=0

t≥18

t≥21 ∧ tr≤maxtr−1 ∧ tr′=tr+1

t≤19 ∧ tr≤maxtr−1 ∧ tr′=tr+1
t=20∧
tr=0

on
ṫ=1 ∧ ṫr=0

t≤22 ∧ tr≤maxtr

off
ṫ=− 0.5 ∧ ṫr=0
t≥18 ∧ tr≤maxtr

t≥21 ∧ tr′=tr+1

t≤19 ∧ tr′=tr+1
t=20∧
tr=0

Fig. 4. The guard (left) and the invariant (right) augmentation of the thermostat model

The invariant augmentation of H is the HA Hinv = (Loc,Var ∪ {tr},Edge′′,
Dyn′, Inv ′′, Init ′) with Dyn′ and Init ′ as above and

– Edge′′ = {(l, (φ ∧ tr′=tr+1), l′) | (l, φ, l′) ∈ Edge};
– Inv ′′(l) = (Inv(l) ∧ tr ≤ maxtr) for each l ∈ Loc.

Figure 4 illustrates the augmentation on the thermostat example. Note that,
apart from restricting the number of jumps, the above augmentation does not
modify the original system behavior. The size of the state space is increased
by the factor maxtr+1, since the value domain of tr is [0,maxtr] ⊆ N for the
constant maxtr.

When we analyze the augmented model, SpaceEx returns for each mode in
the over-approximated set of reachable unsafe states an over-approximation [l, u]
for the values of tr.

Since tr takes integer values only, the lower and upper bounds are not ap-
proximated, i.e., during analysis both after l and after u (over-approximative)
jump computations unsafe states were reached, but we do not have any infor-
mation about the values inbetween. Therefore we fix the number k, describing
the length of counterexamples we want to generate, to be either l or u.

We made some experiments for the thermostat example with unsafe states t ≤
19, and for the navigation benchmark with unsafe states (x1, x2) ∈ [1, 2]× [0, 1].
Table 1 compares for different maxtr values the number of SpaceEx iterations, the
running times, and the resulting tr values for the original models, the guard and
the invariant augmentations. For the same number of iterations, the augmented
models need in average some more (but still comparable) time for the analysis
than the original models; the invariant and guard augmentations seem to be
similar in terms of running time.

Trace encoding In order to observe the traces leading to unsafe states, we need
to remember the jumps in the order of their occurrences. We achieve this by
unrolling the transition relation of the original model k times, where k is the
counterexample length determined in the previous step.

We could define the unrolling by copying each mode k + 1 and each edge k
times, and let the ith copy of an edge connect the ith-copy of the source mode
with the (i + 1)st copy of the target mode. To remember the jumps taken, we
introduce k auxiliary variables tr1, . . ., trk and store on the ith copy of an edge
the edge’s identity in tri. Such an unrolling would cause a polynomial increase
in the size of the model.

137

Table 1. Evaluation of the guard and invariant augmentations with a sampling time
of 0.1 and a time horizon of 30

model augment. maxtr #iter. fixed point running time [secs] tr

thermostat none - 5/11/31 no/no/no 0.11/0.24/0.69 -
example guard 4/10/30 5/11/31 yes/yes/yes 0.25/0.65/2.15 [1, 4]/[1, 10]/[1, 30]

invar. 4/10/30 5/11/31 yes/yes/yes 0.30/0.78/2.53 [1, 4]/[1, 10]/[1, 30]

navigation none - 29/168/3645 no/no/no 1.54/8.63/1598.63 -
benchmark guard 4/10/30 29/168/3645 yes/yes/yes 1.92/12.25/2088.88 [4, 4]/[4, 10]/[4, 30]

invar. 4/10/30 29/168/3160 yes/yes/yes 2.06/13.02/1466.08 [4, 4]/[4, 10]/[4, 30]

navigation2 none - 32/524 no/no 7.55/254.91 -
benchmark, guard 4/10 32/524 yes/yes 7.55/284.19 [4, 4]/[4, 10]
ε = 0.1 invar. 4/10 32/524 yes/yes 7.35/293.88 [4, 4]/[4, 10]

However, in such an unrolling there might be different traces leading to the
same mode. SpaceEx would over-approximate these trace sets by a mode-wise
closure, such that we cannot extract them from the result. E.g., for two traces
l1, l2, l4, l5, l7 and l1, l3, l4, l6, l7, resp., also the trace l1, l2, l4, l6, l7 would be in-
cluded in the over-approximation. Therefore, we copy each mode as many times
as the number of different traces of length up to k leading to it. This yields an
exponential growth in k for the number of locations and transitions.

We augment the unrolled model to observe the traces to unsafe states. In a
naive encoding, we identify edges e1, . . ., ed by numbers 1, . . ., d, and introduce
new variables tri for i=1, . . ., k to store the edges taken.

We also define an advanced encoding which needs less auxiliary variables. If
the domain of a variable includes [0, |Edge|n] for some n ∈ N then we can use
it to store a sequence of n edges: Each time an edge is taken, we multiply the
current value by |Edge| and add the identity of the taken edge. This way we need⌈
k
n

⌉
auxiliary variables to encode a path of length k.

Definition 4 (k-unrolling, trace encoding). Assume a HA H = (Loc,Var,
Edge,Dyn, Inv, Init) with an ordered set {e1, . . ., ed} of edges. The k-unrolling of
H is the HA Hu = (Locu,Varu,Edgeu,Dynu, Invu, Initu) with

– Locu =
⋃

i=1,...,k+1 Loci;
– Varu =Var;
– Edgeu = {((l1, . . ., li), φ, (l1, . . ., li, li+1)) | 1 ≤ i ≤ k ∧ (li, φ, li+1) ∈ Edge};
– Dynu(l1, . . ., li) = Dyn(li) for all (l1, . . ., li) ∈ Locu;
– Invu(l1, . . ., li) = Inv(li) for all (l1, . . ., li) ∈ Locu;
– Initu(l1, . . ., li) = Init(li) for i = 1 and false otherwise, for all (l1, . . ., li) ∈ Locu.

The naive trace encoding of H with depth k is the HA H1 = (Locu,Var1,Edge1,
Dyn1, Invu, Init1) with

– Var1 =Var ∪ {tr1, . . ., trk};
– Edge1 = {((l1, . . ., li), φ ∧ tr′i=j, (l1, . . ., li, li+1)) | 1 ≤ i ≤ k ∧ ej=(li, φ, li+1) ∈ Edge};
– Dyn1(l1, . . ., li) = Dynu(l1, . . ., li) ∧

∧k
j=1 ṫrj = 0 for all (l1, . . ., li) ∈ Locu;

– Init1(l1, . . ., li) = Initu(l1, . . ., li) ∧
∧k

j=1 trj = 0 for all (l1, . . ., li) ∈ Locu.

Let n ∈ N>0 such that [0, dn] is included in the domain of each tri and let
z=d kne. The advanced trace encoding of H with depth k is the HA H2 =

138

on0

t ≤ 22
ṫ = 1 ∧∧

i∈{1,2,3} ṫri = 0

off1

t ≥ 18
ṫ = −0.5 ∧∧

i∈{1,2,3} ṫri = 0

on2

t ≤ 22
ṫ = 1 ∧∧

i∈{1,2,3} ṫri = 0

off3

t ≥ 18
ṫ = −0.5 ∧∧

i∈{1,2,3} ṫri = 0

t ≥ 21 ∧ tr′1 = 0

t ≤ 19 ∧ tr
′
2

= 1

t ≥ 21 ∧ tr′3 = 0

t = 20

Fig. 5. Naive trace encoding of the thermostat example with depth 3

Table 2. Evaluation of the naive and advanced trace encodings for the thermostat
example and the navigation benchmark (k = 4, time step 0.1, time horizon 30) using
π1=l14, l13, l9, l6, l2, π2=l14, l10, l7, l6, l2, π3=l14, l10, l7, l3, l2 and π4=l14, l10, l9, l6, l2

model trace #locs #trans #vars n time [secs] solutions

thermostat none 2 2 1 - 0.136 -
example naive 5 4 5 4 0.312 on, off, on, off, on

adv. 5 4 2 4 0.147 on, off, on, off, on

navigation none 14 36 5 - 1.372 -
benchmark naive 81 80 9 3 1.777 π1;π2;π3;π4

adv. 81 80 7 3 1.503 π1;π2;π3;π4

(Locu,Var2,Edge2,Dyn2, Invu, Init2) with
– Var2 =Var ∪ {tr1, . . ., trz};
– Edge2 = {((l1, . . ., li), φ ∧ tr′di/ne=trdi/ne · d+j, (l1, . . ., li, li+1)) | 1 ≤ i ≤ k ∧
ej=(li, φ, li+1) ∈ Edge;

– Dyn2(l1, . . ., li) = Dynu(l1, . . ., li) ∧
∧z

j=1 ṫrj = 0 for all (l1, . . ., li) ∈ Locu;

– Init2(l1, . . ., li) = Initu(l1, . . ., li) ∧
∧z

j=1 trj = 0 for all (l1, . . ., li) ∈ Locu.

An example unrolled model for the thermostat with naive trace encoding is
shown in Figure 5. Note that depending on the chosen trace encoding, up to k
auxiliary variables are added to the system.

Using our implementation for the proposed trace encodings, in Table 2 we
compare the model sizes and the analysis running times for the thermostat exam-
ple and the navigation benchmark. Compared to the original model, the analysis
running times for the trace encodings increase only slightly. The last column lists
the computed traces, which are (as expected) the same for both encodings.

3.2 Approach II: Parsing the Output of SpaceEx

The approach introduced above does not scale for large systems, since the un-
rollings blow up the models too strongly. If the verification tool offers enough
information about the analyzed system traces, it is perhaps also possible to
extract from the tool’s output the same information we gathered by system aug-
mentation and additional analysis runs. We are interested in determining traces
that lead to unsafe states during the analysis, since they are candidates for pre-

139

sumable counterexamples. Without loss of generality, we assume that unsafe
states are restricted to a single mode.

(l0, P0)
3

(l1, P1)
3

(l2, P2)
2

(l4, P4)
0

(l3, P3)
0

(l5, P5)
1

(l6, P6)
0

(l7, P7)
0

Fig. 6. SpaceEx search tree

SpaceEx stores in a FIFO list a
sequence of symbolic states, each of
them consisting of a mode and a
state set, whose successors still have
to be computed in the forward reach-
ability analysis algorithm. This so-
called waiting list contains initially
each mode with its initial valuation
set (if not empty). In each iteration,
the next element from the list is taken.
Its flowpipe for a user-defined time
horizon and all possible (non-empty)
jump successors of the flowpipe seg-
ments are computed and those that were not yet processed are added to the
list. As illustrated in Figure 6, this computation hierarchy corresponds to a tree
whose nodes are processed in a breadth-first manner. Each node corresponds to
a mode and a set of valuations, which was found to be reachable. The upper
indices on the nodes show the number of computed successor sets, whereas gray
nodes in the figure represent successors that are contained in another already
processed set in the same mode and are therefore not added to the tree.

SpaceEx does not output the structure of this tree. However, using debug
level 2, we can make use of more verbose console outputs to get additional
informations.

– When an iteration starts, SpaceEx outputs a text from which we can extract
the iteration number i (“Iteration 5...”).

– SpaceEx starts the flowpipe computation and outputs the mode of the cur-
rent symbolic state (“applying time elapse in location loc()==l14”).

– The computation of jump successors follows, which is edge-wise. For each
edge, whose source is the current mode, its label, source, target is printed
(“applying discrete post of transition with label navigation.trans

from location loc()==l14 to location loc()==l13”).
– SpaceEx determines, which of the previously computed flowpipe segments

intersect with the guard (“found 1 intervals intersecting with guard”).
– The jump successors for the intersecting flowpipe segments are computed

and, if not yet processed, put to the waiting list. Before switching to the
next outgoing edge, some information on the computation time is given
(“Discrete post done after 0.098s, cumul 0.098s”).

– When all outgoing edges are handled, the iteration is done, and the following
output gives us the total number of processed symbolic states and the current
size of the waiting list (“1 sym states passed, 2 waiting”).

– After termination of the analysis some general analysis results are printed,
e.g., the number of iterations, whether a fixed point was found or not, the
analysis time, and whether unsafe states were reached.

140

If we would succeed to re-construct the search tree (or at least the involved
mode components and their hierarchy) using the above information, we could
extract traces that lead to unsafe states in the tree.

The good news is that from the above outputs we can extract quite some
information regarding the search tree, such that in some cases we can construct
counterexamples. The bad news is that it is not sufficient to reconstruct all
details. E.g., since the waiting list size is reported after each iteration, we can
determine the number of new waiting list elements added during the last iteration
(the new list size minus the old list size minus 1). If this number equals the
total number of all intersecting intervals over all analyzed edges then we can
determine the mode components of the waiting list elements. However, if some
of the successors are already processed and therefore not added to the queue
then we cannot know for sure which sets were added. For example, if out of two
sets having the same mode component only one was added to the queue, then
we cannot know which of them. To avoid wrong guesses, those cases are skipped
and not considered further in our implementation.

Without model augmentation, it is not possible to restrict the SpaceEx search
to paths of a given length, therefore we cannot directly compare this method
to the results of Table 2. We made experiments with the navigation benchmark
using the debug output D2 of SpaceEx. For 50 iterations, with a computation
time of 32.28 seconds we found 11 traces that end in an unsafe state in mode
l2. When considering only 25 iterations, the computation time is 12.69 seconds
and only 4 traces are found. The increase of running time for using SpaceEx
with debug level D2 instead of the default value medium was negligible in our
experiments.

A single analysis run suffices to extract traces of counterexamples thus this
method seems to be superior to the augmentation approaches if the analysis tool
communicates enough information about the system traces. However, if not all
relevant details are accessible, not all traces can be rebuilt safely.

3.3 Approach III: Extending the Functionality of Flow*

Extracting information from the textual output of a tool is an overhead, since
the information was already computed during analysis. Moreover, it might be
imprecise if we do not have access to all needed information.

Instead, we could generate counterexample traces on-the-fly by attaching to
each symbolic state in the waiting queue the trace that lead to it during the
search. The waiting queue initially contains initial symbolic states, to which we
attach themselves. If we add a new symbolic state with location l as a successor
of another symbolic state, then we attach to the new state the path of the
predecessor state extended with the jump whose successor the new state is. The
reachability computation will stop when the tree is complete till depth k (the
maximal jump depth). Next, Flow* intersects each tree node with the unsafe
set. If a non-empty intersection is detected, the tool dumps the trace attached
to the unsafe node.

141

Table 3. Trace generation using Flow* (k = 4, time step 0.1, time horizon 30,
π1=l14, l13, l9, l6, l2, π2=l14, l10, l7, l6, l2 and π3=l14, l10, l7, l3, l2)

model running time [secs] solutions

thermostat example 0.23 on, off, on, off, on

navigation benchmark 8.37 π1, π2, π3

To implement the above functionality, only minor changes had to be made
in Flow*, but it saves us the time of augmenting the system or parsing tool
output. We made experiments in line with Table 2 for the thermostat example
and the navigation benchmark. The results are shown in Table 3. Please note
that Flow* does not compute the trace l14, l10, l9, l6, l2, which is spurious.
We additionally analyzed the navigation benchmark with k = 8, where Flow*
generated 8 traces to unsafe states in l2 with initial valuation x1 ∈ [3, 3.5],
x2 ∈ [3, 4], v1 ∈ [−0.1, 0.1] and v2 ∈ [−0.8,−0.5].

4 Generating a Presumable Counterexample

In this section we show how we can generate presumable counterexamples by
extending the previously computed traces to timed traces. Given a trace, we
compute a reduced model that has the jumps of the trace only. This model is
augmented with a clock timer and variables tstampi, i = 1, . . ., k, one for each
jump in the trace. The clock is initialized to 0 and has derivative 1. Whenever
a jump is taken, the clock value is stored in the timestamp of the jump and the
clock is reset to 0. Figure 7 illustrates the above transformation.

Definition 5 (Trace model). Given a hybrid automaton H = (Loc,Var,Edge,
Dyn, Inv, Init) and a finite trace e1, . . ., ek of H with ei = (li, φi, li+1), the trace
model of H for e1, . . ., ek is the HA H′ = (Loc′,Var′,Edge′,Dyn′, Inv′, Init′) with

– Loc′ = {(l1, 0), . . . , (lk, k), (lk+1, k + 1)};
– Var′ =Var ∪ {timer, tstamp1, . . ., tstampk};
– Edge′ = {((li, i), φi ∧ tstamp′i = timer ∧ timer′ = 0, (li+1, i+ 1)) | i ∈ {1, . . ., k}};
– Dyn′(l, i) = Dyn(l) ∧ ˙timer = 1 ∧∧i=1,...,k

˙tstampi = 0 for all (l, i) ∈ Loc′;
– Inv′(l, i) = Inv(l) for all (l, i) ∈ Loc′;
– Init′(l, i) = Init(l) ∧ timer = 0 for all (l, i) ∈ Loc′.

Another method to get timing information is as follows. Both in SpaceEx
and in Flow*, the time horizon [0, T] of a flowpipe is divided into smaller time
intervals [0, δ], [δ, 2δ], . . ., [(n−1)δ, nδ] with nδ = T . The flowpipe is computed as
a union of flowpipe segments, one for each smaller interval. Thus the tools have
internal information about the timestamps of the symbolic states in the waiting
list. We make use of this fact and label the symbolic states in Flow* with the
timed traces which lead to them. This way we get the timing information for
free. Please note that this would also be possible for SpaceEx. In Flow* an
additional backward refinement of the time intervals of the timed trace would
be also possible, which we cannot describe here due to space limitations.

142

on0

t ≤ 22

ṫ = 1 ∧ ˙timer = 1∧∧
i∈{1,...,3} ˙tstampi = 0

off1

t ≥ 18

ṫ = 1 ∧ ˙timer = 1∧∧
i∈{1,...,3} ˙tstampi = 0

on2

t ≤ 22

ṫ = 1 ∧ ˙timer = 1∧∧
i∈{1,...,3} ˙tstampi = 0

off3

t ≥ 18

ṫ = 1 ∧ ˙timer = 1∧∧
i∈{1,...,n} ˙tstampi = 0

t ≥ 21 ∧ tstamp′1 = timer

∧timer′ = 0

t ≤ 19 ∧ tstamp
′
2

= timer

∧timer
′ = 0

t ≥ 21 ∧ tstamp′3 = timer

∧timer′ = 0

t = 20 ∧ timer = 0∧
∧

i∈{1,...,n} tstampi = 0

Fig. 7. Trace model of the thermostat example for k = 3

Table 4. Comparison of the timed traces for the navigation benchmark computed by
SpaceEx and Flow* (k = 4, time step 0.1, time horizon 30, traces from Table 2 and
3)

Initial states: l14, x1 ∈ [3.0, 3.8], x2 ∈ [3.0, 4.0], v1 ∈ [−0.1, 0.1], v2 ∈ [−0.8,−0.5]

SpaceEx result in 6.46s:
π1 : l14, [0.0, 0.6], l13, [0.0,1.4], l9, [1.5,1.8], l6, [2.3, 2.5], l2
π2 : l14, [0.0, 1.9], l10, [1.5, 1.9], l7, [0.2, 2.5], l6, [0.0, 2.4], l2
π3 : l14, [0.0, 1.9], l10, [1.5, 1.9], l7, [2.3, 2.5], l3, [0.0, 1.0], l2
π4 : l14, [0.0, 1.9], l10, [0.0, 0.6], l9, [0.9, 1.4], l6, [0.0, 0.0], l2
Flow* result in 8.37s:
π1 : l14, [0.000,0.566], l13, [0.000, 1.420], l9, [1.531, 1.880], l6, [2.421,2.422], l2
π2 : l14, [0.000,1.854], l10, [1.534,1.836], l7, [0.310,2.371], l6, [0.000,2.385], l2
π3 : l14, [0.000,1.854], l10, [1.534,1.836], l7, [2.415,2.416], l3, [0.000,0.912], l2

Table 4 shows some experimental results for the navigation benchmark. We
compute timed extensions of the previously computed counterexample traces to
build presumable counterexamples. The running times include for Flow* a com-
plete reachability analysis up to jump depth 4, and for SpaceEx the generation of
the traces with Approach II and extracting timing information by building and
analyzing the trace models. Both tools have their advantages: SpaceEx computes
the results faster, Flow* gives sometimes better refinements.

5 Simulation

To gain counterexamples, we identifying some suitable candidate initial states
from the initial state set and refine the timed trace by restricting the timing
informations to the chosen state. Then we apply simulation heuristically to find
concrete counterexamples contained in the refined timed traces.

The task of finding initial state candidates for simulation is non-trivial, since
the timed traces over-approximate counterexamples, such that not all initial
states lead to unsafe states within the given time bounds. W.l.o.g. we assume
that the initial set is given as a hyperrectangle (otherwise we over-approximate
the initial set by a hyperrectangle and use in the following the conjunction of

143

the hyperrectangle with the initial set). We obtain single initial state candidates
by applying a binary search on the initial set combined with an analysis run
to check whether the unsafe states are still reachable. As long as unsafe states
can be reached from a hyperrectangle and in at least one dimension its width is
larger than a specified parameter ε, the corner points of the hyperrectangle are
added to the set of initial state candidates and the interval is splitted (in one
dimension in the middle). The binary search stops if either the specified number
of candidates are computed or if all hyperrectangles reached the minimal width.

The user can choose between a depth- (DFS) and a breadth-first search (BFS)
to generate initial state candidates. DFS computes closely lying points fast, BFS
searches for widely spread points at a higher computation time.

For the trace l14, l10, l7, l6, l2 of the navigation benchmark, our implemen-
tation needs 19ms to create the trace model. For the DFS SpaceEx has to be
run 42 times until 10 points from the initial set from which the unsafe state l2
is reachable are computed. The corresponding computation time is 7.14s. The
BFS finds the first 10 points within 29.90s and 133 SpaceEx calls.

Given a set of initial state candidates, we use adaptive step-size numeri-
cal simulation to validate timed traces as counterexamples. Please note that for
linear differential equations the initial value problem is solvable, i.e., we can com-
pute for each state the (unique) state reachable from it in time δ; however, since
exponential function values must be determined, the computation is still not
exact. The simulation starts at the initial state candidates, whereas the visited
modes and the flow durations are restricted to the specifications in the timed
trace. Non-determinism (at which time point a jump is taken) is handled by
selecting a homogeneously distributed set of time points from the given allowed
time interval and branching the simulation for each selected time point. How-
ever, these time points are dynamically adapted in certain cases, for example
when otherwise edge guards or invariants would not be satisfied. We also de-
veloped some optimizations, which we cannot describe here in detail, to reduce
the number of simulations needed. The basic idea is to stop simulation branches
that cannot lead to unsafe states as early as possible.

Table 5 shows the simulation results for some timed traces, each with a single
initial state. Note that we find counterexamples (i.e., we reach the maximal jump
depth) only in the two middle cases. We additionally run SpaceEx analyses with
the given initial point for the first trace and could not reach the bad state with
a time step of 0.001, i.e., the first timed trace is spurious. The last trace was not
computed by Flow* and is therefore spurious.

6 Conclusion and Future Work

In this paper we described an approach to find presumable counterexamples for
hybrid automata based on existing reachability tools. Next we plan to improve
our method by (1) a backward refinement of the time intervals on timed paths,
(2) a rigorous simulation technique for hybrid automata, (3) giving a better
heuristics to select the initial points for simulation and (4) use several tools

144

Table 5. Simulation results for the navigation benchmark with ε-enlarging
π1 = l14, [0.0, 0.2], l13, [0.0, 0.4], l9, [1.5, 1.6], l6, [2.4, 2.5], l2

with initial state (3.0084472656250005, 3.21875,−0.1,−0.8)
π2 = l14, [1.834, 1.835], l10, [1.779, 1.78], l7, [1.934, 1.936], l6, [0.511, 0.514], l2

with initial state (3.2, 4.0, 0.1,−0.5)
π3 = l14, [0.000, 0.001], l10, [1.569, 1.570], l7, [2.429, 2.431], l3, [0.514, 0.517], l2

with initial state (3.8, 3.0,−0.1,−0.8)
π4 = l14, [0.0, 0.1], l10, [0.0, 0.5], l9, [1.0, 1.3], l6, [2.3, 2.5], l2

with initial state (3.0125, 3.0,−0.1,−0.8)

timed trace step size ε reached jump depth #simulated paths unsafe time [secs]

π1 0.0005 0.0005 2 128 · 108 0 20.91
0.05 0.5 3 128 0 04.26

π2 0.0005 0.5 4 964 > 50 14.82

π3 0.0005 0.05 4 96 > 50 14.44
0.0005 0.0005 4 96 50 10.51

π4 0.0005 0.0005 2 480 · 108 0 15.46
0.05 0.05 3 480 0 07.88

and take the best results to minimize the overestimation in a presumable coun-
terexample. Preliminary results suggest that the function calculus of the tool
Ariadne can be used to validate counterexamples.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theor. Comput. Sci. 138 (1995) 3–34

2. Frehse, G., Le Guernic, C., Donzé, A., Lebeltel, R.R.O., Ripado, R., Girard, A.,
Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems. In: Proc.
of CAV’11. Volume 6806 of LNCS., Springer (2011) 379–395

3. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Proc. of CAV’13. Volume 8044 of LNCS., Springer (2013)
258–263

4. Stursberg, O., Krogh, B.H.: Efficient representation and computation of reachable
sets for hybrid systems. In: Proc. of HSCC’03. Volume 2623 of LNCS., Springer
(2003) 482–497

5. Chutinan, A., Krogh, B.H.: Computing polyhedral approximations to flow pipes for
dynamic systems. In: Proc. of CDC’98 (volume 2), IEEE Press (1998) 2089–2094

6. Henzinger, T.A., Ho, P., Wong-Toi, H.: HyTech: A model checker for hybrid sys-
tems. Software Tools for Technology Transfer 1 (1997) 110–122

7. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In:
Proc. of HSCC’05. Volume 3414 of LNCS., Springer (2005) 258–273

8. Kvasnica, M., Grieder, P., Baotić, M.: Multi-parametric toolbox (MPT) (2004)
http://control.ee.ethz.ch/∼mpt/.

9. Chen, X., Ábrahám, E.: Choice of directions for the approximation of reachable
sets for hybrid systems. In: Proc. of EUROCAST’11. Volume 6927 of LNCS.,
Springer (2011) 535–542

145

10. Kühn, W.: Zonotope dynamics in numerical quality control. In: Mathematical
Visualization: Algorithms, Applications and Numerics. Springer (1998) 125–134

11. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Proc. of
HSCC’05. Volume 3414 of LNCS., Springer (2005) 291–305

12. Bournez, O., Maler, O., Pnueli, A.: Orthogonal polyhedra: Representation and
computation. In: Proc. of HSCC’99. Volume 1569 of LNCS., Springer (1999) 46–
60

13. Kurzhanski, A.B., Varaiya, P.: On ellipsoidal techniques for reachability analysis.
Optimization Methods and Software 17 (2000) 177–237

14. Le Guernic, C.: Reachability Analysis of Hybrid Systems with Linear Continuous
Dynamics. PhD thesis, Université Joseph Fourier (2009)

15. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Proc. of CAV’09. Volume 5643 of LNCS., Springer (2009) 540–554

16. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: Proc. of RTSS’12, IEEE Computer Society (2012)
183–192

17. Collins, P., Bresolin, D., Geretti, L., Villa, T.: Computing the evolution of hy-
brid systems using rigorous function calculus. In: Proc. of ADHS’12, IFAC-
PapersOnLine (2012)

18. Mitchell, I., Tomlin, C.: Level set methods for computation in hybrid systems. In:
Proc. of HSCC’00. Volume 1790 of LNCS., Springer (2000) 310–323

19. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems.
In: Proc. of CAV’02. Volume 2404 of LNCS., Springer (2002) 365–370

20. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. IEEE Transactions on Automatic Control 52 (2007) 782–798

21. Kurzhanskiy, A., Varaiya, P.: Ellipsoidal toolbox. Technical report, EECS, UC
Berkeley (2006)

22. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-
Vincentelli, A.L.: Ariadne: A framework for reachability analysis of hybrid au-
tomata. In: Proc. of MTNS’06. (2006)

23. Prabhakar, P., Duggirala, P.S., Mitra, S., Viswanathan, M.: Hybrid automata-
based CEGAR for rectangular hybrid systems. In: Proc. of VMCAI’13. Volume
7737 of LNCS., Springer (2013) 48–67

24. Duggirala, P.S., Mitra, S.: Abstraction refinement for stability. In: Proc. of IC-
CPS’11, IEEE (2011) 22–31

25. Fehnker, A., Ivancic, F.: Benchmarks for hybrid systems verification. In: Proc. of
HSCC’04. Volume 2993 of LNCS., Springer (2004) 326–341

146

Compositional Nonblocking Verification
with Always Enabled Events and Selfloop-only Events

Colin Pilbrow Robi Malik

Department of Computer Science, University of Waikato, Hamilton, New Zealand
colinpilbrow@gmail.com robi@waikato.ac.nz

Abstract. This paper proposes to improve compositional nonblocking verifica-
tion through the use of always enabled and selfloop-only events. Compositional
verification involves abstraction to simplify parts of a system during verification.
Normally, this abstraction is based on the set of events not used in the remain-
der of the system, i.e., in the part of the system not being simplified. Here, it is
proposed to exploit more knowledge about the system and abstract events even
though they are used in the remainder of the system. Abstraction rules from previ-
ous work are generalised, and experimental results demonstrate the applicability
of the resulting algorithm to verify several industrial-scale discrete eventsystem
models, while achieving better state-space reduction than before.

1 Introduction

The nonblocking propertyis a weak liveness property commonly used insupervisory
control theoryof discrete event systems to express the absence of livelocks or dead-
locks [6, 24]. This is a crucial property of safety-criticalcontrol systems, and with the
increasing size and complexity of these systems, there is anincreasing need to verify
the nonblocking property automatically. The standard method to check whether a sys-
tem is nonblocking involves the explicit composition of allthe automata involved, and
is limited by the well-knownstate-space explosionproblem.Symbolic model checking
has been used successfully to reduce the amount of memory required by representing
the state space symbolically rather than enumerating it explicitly [2].

Compositional verification[11, 29] is an effective alternative that can be used in-
dependently of or in combination with symbolic methods. Compositional verification
works by simplifying individual automata of a large synchronous composition, gradu-
ally reducing the state space of the system and allowing muchlarger systems to be ver-
ified in the end. When applied to the nonblocking property, compositional verification
requires very specific abstraction methods [10,19]. A suitable theory is laid out in [20],
where it is argued that abstractions used in nonblocking verification should preserve
a process-algebraic equivalence calledconflict equivalence. Various abstraction rules
preserving conflict equivalence have been proposed and implemented [10,19,22,27].

Conflict equivalence is the most general process equivalence for use in composi-
tional nonblocking verification [20]. If a part of a system isreplaced by a conflict equiv-
alent abstraction, the nonblocking property is guaranteedto be preserved independently
of the other components of the system. While this is easy to understand and implement,

147

more simplification is possible by considering the other system components. This pa-
per proposes simplification rules that take into account that certain events are always
enabled or only selfloops in the rest of the system, and showshow this additional infor-
mation can achieve further state-space reduction.

In the following, Section 2 introduces the background of nondeterministic automata,
the nonblocking property, and conflict equivalence. Next, Section 3 describes compo-
sitional verification and always enabled and selfloop-onlyevents. Section 4 presents
simplification rules that exploit such events, and Section 5shows how these events are
found algorithmically. Afterwards, Section 6 presents theexperimental results, and Sec-
tion 7 adds concluding remarks. Further details and formal proofs of technical results
will be available in [23].

2 Preliminaries

2.1 Events and Languages

Event sequences and languages are a simple means to describediscrete system be-
haviours [6, 24]. Their basic building blocks areevents, which are taken from a finite
alphabetA. In addition, two special events are also used, thesilent eventτ and the
termination eventω. These are never included in an alphabetA unless mentioned ex-
plicitly using notation such asAτ = A∪{τ}, Aω = A∪{ω}, andAτ ,ω = A∪{τ,ω}.

A∗ denotes the set of all finitetracesof the form σ1σ2 · · ·σn of events fromA,
including theempty traceε. Theconcatenationof two tracess, t ∈ A∗ is written asst.
A subsetL ⊆ A∗ is called alanguage. The natural projection P: A∗

τ ,ω → A∗
ω is the

operation that deletes all silent (τ) events from traces.

2.2 Nondeterministic Automata

System behaviours are modelled using finite automata. Typically, system models are
deterministic, but abstraction may result in nondeterminism.

Definition 1. A (nondeterministic)finite automatonis a tupleG= 〈A ,Q,→,Q◦〉where
A is a finite set ofevents, Q is a finite set ofstates, → ⊆ Q×Aτ ,ω ×Q is thestate
transition relation, andQ◦ ⊆ Q is the set ofinitial states.

The transition relation is written in infix notationx
σ→ y, and is extended to traces

s∈ A∗
τ ,ω in the standard way. For state setsX,Y ⊆ Q, the notationX

s→Y meansx
s→ y

for somex ∈ X andy ∈ Y, andX
s→ y meansx

s→ y for somex ∈ X. Also, X
s→ for a

state or state setX denotes the existence of a statey∈ Q such thatX
s→ y.

The termination eventω /∈ A denotes completion of a task and does not appear
anywhere else but to mark such completions. It is required that states reached byω
do not have any outgoing transitions, i.e., ifx

ω→ y then there does not existσ ∈ Aτ ,ω

such thaty
σ→. This ensures that the termination event, if it occurs, is always the final

event of any trace. The traditional set ofterminalstates isQω = {x∈ Q | x
ω→} in this

notation. For graphical simplicity, states inQω are shown shaded in the figures of this
paper instead of explicitly showingω-transitions.

148

To support silent events, another transition relation⇒⊆ Q×A∗
ω ×Q is introduced,

wherex
s⇒ y denotes the existence of a tracet ∈A∗

τ ,ω such thatP(t) = sandx
t→ y. That

is, x
s→ y denotes a path withexactlythe events ins, while x

s⇒ y denotes a path with
an arbitrary number ofτ events shuffled with the events ofs. Notations such asX

s⇒Y
andx

s⇒ are defined analogously to→.

Definition 2. Let G = 〈AG,QG,→G,Q◦
G〉 and H = 〈AH ,QH ,→H ,Q◦

H〉 be two auto-
mata. Thesynchronous compositionof G andH is

G‖H = 〈AG∪AH ,QG×QH ,→,Q◦
H ×Q◦

H〉 , (1)

where

– (xG,xH)
σ→ (yG,yH) if σ ∈ (AG∩AH)∪{ω}, xG

σ→G yG, andxH
σ→H yH ;

– (xG,xH)
σ→ (yG,xH) if σ ∈ (AG\AH)∪{τ} andxG

σ→G yG;
– (xG,xH)

σ→ (xG,yH) if σ ∈ (AH \AG)∪{τ} andxH
σ→H yH .

Automata are synchronised using lock-step synchronisation [13]. Shared events (in-
cludingω) must be executed by all automata synchronously, while other events (includ-
ing τ) are executed independently.

2.3 The Nonblocking Property

The key liveness property in supervisory control theory is thenonblockingproperty. An
automaton is nonblocking if, from every reachable state, a terminal state can be reached;
otherwise it isblocking. When more than one automaton is involved, it also is common
to use the termsnonconflictingandconflicting.

Definition 3. [20] An automatonG= 〈A ,Q,→,Q◦〉 is nonblockingif, for every state

x∈ Q and every traces∈ A∗ such thatQ◦ s⇒ x, there exists a tracet ∈ A∗ such thatx
tω⇒.

Two automataG andH arenonconflictingif G‖H is nonblocking.

To reason about conflicts in a compositional way, the notion of conflict equivalence
is developed in [20]. According to process-algebraic testing theory, two automata are
considered as equivalent if they both respond in the same wayto tests [7]. Forcon-
flict equivalence, a test is an arbitrary automaton, and theresponseis the observation
whether the test composed with the automaton in question is nonblocking or not.

Definition 4. [20] Two automataG andH areconflict equivalent, written G≃conf H,
if, for any automatonT, G‖T is nonblocking if and only ifH ‖T is nonblocking.

3 Compositional Verification

When verifying whether a composed system of automata

G1‖G2‖ · · · ‖Gn , (2)

149

is nonblocking, compositional methods [10, 19] avoid building the full synchronous
composition immediately. Instead, individual automataGi are simplified and replaced
by smaller conflict equivalent automataHi ≃conf Gi . If no simplification is possible, a
subsystem of automata(G j) j∈J is selected and replaced by its synchronous composi-
tion, which then may be simplified.

The soundness of this approach is justified by thecongruenceproperties [20] of
conflict equivalence. For example, ifG1 in (2) is replaced byH1 ≃conf G1, then by
consideringT = G2 ‖ · · · ‖Gn in Def. 4, it follows that the abstracted systemH1 ‖T =
H1‖G2‖ · · · ‖Gn is nonblocking if and only if the original system (2) is.

Previous approaches for compositional nonblocking verification [10, 19] are based
on local events. A componentG1 in a system such as (2) typically contains some events
that appear only inG1 and not in the remainderT = G2 ‖ · · · ‖Gn of the system. These
events are called local and are abstracted using hiding, i.e., they are replaced by the
silent eventτ. Conflict equivalence usesτ as a placeholder for events not used else-
where, and in this setting is the coarsest conflict-preserving abstraction [20].

Yet, in practice, the remainderT =G2‖· · ·‖Gn is known. This paper proposes ways
to use additional information aboutT to inform the simplification ofG1 and produce
better abstractions. In addition to using theτ events, it can be examined how other
events are used byT. There are two kinds of events that are easy to detect:always
enabledevents andself loop-onlyevents.

Definition 5. Let G= 〈A ,Q,→,Q◦〉 be an automaton. An eventσ ∈ A is always en-

abledin G, if for every statex∈ Q it holds thatx
σ⇒.

An event is always enabled in an automaton if it can be executed from every state—
possibly after some silent events. If during compositionalverification, an event is found
to be always enabled in every automaton except the one being simplified, this event has
similar properties to a silent event. Several abstraction methods that exploit silent events
to simplify automata can be generalised to exploit always enabled events also.

Definition 6. Let G= 〈A ,Q,→,Q◦〉 be an automaton. An eventσ ∈ A is selfloop-only

in G, if for every transitionx
σ→ y it holds thatx= y.

Selfloopsare transitions that have the same start and end states. An event is selfloop-
only if it only appears on selfloop transitions. As the presence of selfloops does not
affect the nonblocking property, the knowledge that an event is selfloop-only can help
to simplify the system beyond standard conflict equivalence. In the following definition,
conflict equivalence is generalised by considering setsE andSof events that are always
enabled or selfloop-only in the rest of the system, i.e., in the testT.

Definition 7. Let G andH be two automata, and letE andS be two sets of events.G
andH areconflict equivalentwith respect toE andS, written G ≃E,S H, if for every
automatonT such thatE is a set of always enabled events inT andS is a set of selfloop-
only events inT, it holds thatG‖T is nonblocking if and only ifH ‖T is nonblocking.

Clearly, standard conflict equivalence implies conflict equivalence with respect to
E andS, as the latter considers fewer testsT. Yet, both equivalences have the same
useful properties for compositional nonblocking verification. The following results are
immediate from the definition.

150

G

PSfrag

0 1

2 3

τ

α

α β

βη

H

2 3

01

α

α

β

β
η

T 0

1

α
β
η

G‖T (0,0)
(1,0)

(1,2)

τ

α

H ‖T (0,0)

(1,2)

α

Fig. 1.Two automataG andH such thatG≃{η}, /0 H but notG≃conf H.

Proposition 1. Let G andH be two automata.

(i) G≃conf H if and only if G≃ /0, /0 H.
(ii) If E ⊆ E′ andS⊆ S′ thenG≃E,S H impliesG≃E′,S′ H.

Proposition 2. LetG1, . . . ,Gn andH1 be automata such thatG1 ≃E,S H1, whereE andS
are sets of events that respectively are always enabled and selfloop-only forG2‖· · ·‖Gn.
ThenG1‖ · · · ‖Gn is nonblocking if and only ifH1‖G2‖ · · · ‖Gn is nonblocking.

Prop. 1 confirms that conflict equivalence with respect toE andS is coarser than
standard conflict equivalence and considers more automata as equivalent. Thus, the
modified equivalence has the potential to achieve better abstraction. At the same time,
Prop. 2 shows that the modified equivalence can be used in the same way as standard
conflict equivalence to replace automata in compositional verification, provided that
suitable event setsE andScan be determined.

Example 1. AutomataG andH in Fig. 1 arenot conflict equivalent as demonstrated
by the test automatonT. On the one hand,G‖T is blocking because the state(1,0)
is reachable byτ from the initial state(0,0), and(1,0) is a deadlock state, becauseG
disables eventα in state 1 andT disables eventsβ andη in state 0. On the other hand,
H ‖T is nonblocking.

Note thatη is not always enabled inT since 0
η⇒T does not hold. In composition

with a testT that hasη always enabled,G will be able to continue from state 1, andH
will be able to continue from state 01. It follows from Prop. 4below thatG≃{η}, /0 H.

4 Simplification Rules

To exploit conflict equivalence in compositional verification, it is necessary to algorith-
mically compute a conflict equivalent abstraction of a givenautomaton. Several abstrac-
tion rules are known for standard conflict equivalence [10,19]. This section generalises
some of these and proposes four computationally feasible rules to simplify automata
under the assumption of always enabled and selfloop-only events. Before that, Subsec-
tion 4.1 introduces general terminology to describe all abstractions.

4.1 Automaton Abstraction

A common method to simplify an automaton is to construct itsquotientmodulo an
equivalence relation. The following definitions are standard.

151

An equivalence relationis a binary relation that is reflexive, symmetric and transi-
tive. Given an equivalence relation∼ on a setQ, theequivalence classof x ∈ Q with
respect to∼, denoted[x], is defined as[x] = {x′ ∈ Q | x′ ∼ x}. An equivalence relation
on a setQ partitionsQ into the setQ/∼= { [x] | x∈ Q} of its equivalence classes.

Definition 8. Let G= 〈A ,Q,→,Q◦〉 be an automaton, and let∼⊆ Q×Q be an equiv-
alence relation. Thequotient automaton G/∼ of G with respect to∼ is G/∼ = 〈A,

Q/∼ ,→/∼ ,Q̃◦〉, whereQ̃◦ = { [x◦] | x◦ ∈ Q◦ } and→/∼= {([x],σ , [y]) | x
σ→ y}.

When constructing a quotient automaton, classes of equivalent states in the original
automaton are combined ormergedinto a single state. A common equivalence relation
to construct quotient automata isobservation equivalenceor weak bisimulation[21].

Definition 9. [21] Let G= 〈A ,Q,→,Q◦〉 be an automaton. A relation≈ ⊆ Q×Q is
anobservation equivalencerelation onG if, for all statesx1,x2 ∈ Q such thatx1 ≈ x2

and all tracess∈ A∗
ω the following conditions hold:

(i) if x1
s⇒ y1 for somey1 ∈ Q, then there existsy2 ∈ Q such thaty1 ≈ y2 andx2

s⇒ y2;
(ii) if x2

s⇒ y2 for somey2 ∈ Q, then there existsy1 ∈ Q such thaty1 ≈ y2 andx1
s⇒ y1.

Two states are observation equivalent if they have got exactly the same sequences
of enabled events, leading to equivalent successor states.Observation equivalence is
a well-known equivalence with efficient algorithms that preserves all temporal logic
properties [5]. In particular, an observation equivalent abstraction is conflict equivalent
to the original automaton.

Proposition 3. [19] Let G be an automaton, and let≈ be an observation equivalence
relation onG. ThenG≃conf G/≈.

A special case of observation equivalence-based abstraction is τ-loop removal. If
two states are mutually connected by sequences ofτ-transitions, it follows from Def. 9
that these states are observation equivalent, so by Prop. 3 they can be merged preserving
conflict equivalence. This simple abstraction results in aτ-loop freeautomaton, i.e., an
automaton that does not contain any proper cycles ofτ-transitions.

Definition 10. Let G = 〈A ,Q,→,Q◦〉 be an automaton.G is τ-loop free, if for every

pathx
t→ x with t ∈ {τ}∗ it holds thatt = ε.

While τ-loop removal and observation equivalence are easy to compute and pro-
duce good abstractions, there are conflict equivalent automata that are not observation
equivalent. Several other relations are considered for conflict equivalence [10,19].

Definition 11. [10] Let G = 〈A ,Q,→,Q◦〉 be an automaton. Theincoming equiva-
lencerelation∼inc ⊆ Q×Q is defined such thatx∼inc y if,

(i) Q◦ ε⇒ x if and only if Q◦ ε⇒ y;
(ii) for all statesw∈ Q and all eventsσ ∈ A it holds thatw

σ⇒ x if and only if w
σ⇒ y.

Two states are incoming equivalent if they have got the same incoming transitions
from the exactly same source states. (This is different fromreverse observation equiv-
alence, which acceptsequivalentrather than identical states.) Incoming equivalence
alone is not enough for conflict-preserving abstraction. Itis combined with other con-
ditions in the following.

152

4.2 Enabled Continuation Rule

The Enabled Continuation Rule is a generalisation of the Silent Continuation Rule [10],
which allows to merge incoming equivalent states in aτ-loop free automaton provided
they have both have an outgoingτ-transition. The reason for this is that, if a state has
an outgoingτ-transition, then the other outgoing transitions are “optional” [10] for a
test that is to be nonblocking with this automaton. Only continuations from states with-
out furtherτ-transitions must be present in the test. Using always enabled events, the
condition onτ-transitions can be relaxed: it also becomes possible to merge incoming
equivalent states if they have outgoing always enabled transitions instead ofτ.

Rule 1 (Enabled Continuation Rule).In a τ-loop free automaton, two states that are
incoming equivalent and both have an outgoingalways enabledor τ-transition are con-
flict equivalent and can be merged.

Example 2. Consider automatonG in Fig. 1 with E = {η}. States 0 and 1 are both
“initial” since they both can be reached silently from the initial state 0. This is enough
to satisfy∼inc in this case, since neither state is reachable by any event other thanτ.
Moreover,G has noτ-loops, state 0 has an outgoingτ-transition, and state 1 has an
outgoing always enabled eventη . Thus, by the Enabled Continuation Rule, states 0
and 1 inG are conflict equivalent and can be merged into state 01 as shown in H.

Note that states 0 and 1 are not observation equivalent because 0
α→ 2 while state 1

has no outgoingα-transition. The Silent Continuation Rule [10] also is not applicable
because state 1 has no outgoingτ-transition. Only with the additional information that
η is always enabled, it becomes possible to merge states 0 and 1.

Proposition 4. Let G= 〈A,Q,→G,Q◦〉 be aτ-loop free automaton, letE ⊆ A, and let
∼⊆ Q×Q be an equivalence relation such that∼⊆∼inc, and for allx,y∈ Q such that

x∼ y it holds that eitherx= y or x
η1⇒ andy

η2⇒ for some eventsη1,η2 ∈ E∪{τ}. Then
G≃E, /0 G/∼.

Prop. 4 confirms that the nonblocking property of the system is preserved under the
generalised silent continuation rule, provided thatE is a set of always enabled events
for the remainder of the system.

4.3 Only Silent Incoming Rule

The Only Silent Incoming Rule [10] is a combination of observation equivalence and
the Silent Continuation Rule. Since the Silent Continuation Rule has been generalised
to use always enabled events, the Only Silent Incoming Rule can as well.

The original Only Silent Incoming Rule [10] makes it possible to remove a state
with only τ-transitions incoming and merge it into its predecessors, provided that the
removed state has got at least one outgoingτ-transition. Again, the requirement for an
outgoingτ-transition can be relaxed to allow an always enabled transition also.

Rule 2 (Only Silent Incoming Rule).If a τ-loop free automaton has a stateq with only
τ-transitions entering it, and an always enabled orτ-transition outgoing from stateq,
then all transitions outgoing fromq can can be copied to originate from the states with
τ-transitions toq. Afterwards, theτ-transitions toq can be removed.

153

G 0 1

2 3τ

τα α

β
β

γ

η

G′ 0 1

2 3a

3b

τ

τ

α
α

α

β
β

γ
η

η

H 0 1

2

α
α α

β
β

γ

ηη

Fig. 2. Example of application of the Only Silent Incoming Rule.

G
0 1

2 3
τ

α α

β

η

H
0 1

2 3

α

β H ′
0

⊥
α ,β

Fig. 3.Example of application of the Limited Certain Conflicts Rule.

Example 3. In Fig. 2 it holds thatG≃{η}, /0 H. State 3 inG has onlyτ-transitions in-
coming and the always enabled eventη outgoing. This state can be removed in two
steps. First, state 3 is split into two observation equivalent states 3a and 3b in G′, and
afterwards the Silent Continuation Rule is applied to mergethese states into their in-
coming equivalent predecessors, resulting inH. Note that states 1, 2, and 3 are not
observation equivalent because of theβ - andγ-transitions from states 1 and 2.

Proposition 5. Let G= 〈A,Q,→G,Q◦〉 be aτ-loop free automaton, and letE ⊆ A. Let

q ∈ Q such thatq
η→G for someη ∈ E∪{τ}, and for each transitionx

σ→G q it holds
thatσ = τ. Further, letH = 〈A,Q,→H ,Q◦〉 with

→H = {(x,σ ,y) | x
σ→G y andy 6= q} ∪ {(x,σ ,y) | x

τ→G q
σ→G y} . (3)

ThenG≃E, /0 H.

It is shown in [10] that the Only Silent Incoming Rule can be expressed as a com-
bination of observation equivalence and the Silent Continuation Rule as suggested in
Example 3. The same argument can be used to prove Prop. 5.

4.4 Limited Certain Conflicts Rule

If an automaton contains blocking states, i.e., states fromwhere no state with anω-
transition can be reached, then a lot of simplification is possible. Once a blocking state
is reached, all further transitions are irrelevant. Therefore, all blocking states can be
merged into a single state, and all their outgoing transitions can be deleted [18].

In fact, this rule does not only apply to blocking states. Forexample, consider state 3
in automatonG in Fig. 3. Despite the fact that 3

ω→, i.e., 3 is a terminal state, if state 3
is ever reached, the composed system is necessarily blocking, as nothing can prevent it
from executing the silent transition 3

τ→ 2 to the blocking state 2. State 3 is a state of
certain conflicts, and such states can be treated like blocking states for the purpose of
abstraction.

154

It is possible to calculate all states of certain conflicts, but the algorithm to do this
is exponential in the number of states of the automaton to be simplified [18]. To reduce
the complexity, the Limited Certain Conflicts Rule [10] approximates the set of certain
conflicts. If a state has aτ-transition to a blocking state, then the source state also
is a state of certain conflicts. This can be extended to include always enabled events,
because if an always enabled transition takes an automaton to a blocking state, then
nothing can disable this transition and the composed systemis necessarily blocking.

Rule 3 (Limited Certain Conflicts Rule). If an automaton contains an always enabled
or τ-transition to a blocking state, then the source state of this transition is a state of
certain conflicts, and all its outgoing transitions can be deleted.

Example 4. Consider automatonG in Fig. 3 with E = {η}. States 1, 2, and 3 are
states of certain conflicts. State 2 is already blocking, andstates 1 and 3 have aτ- or
an always enabledη-transition to the blocking state 2. All outgoing transitions from
these states are removed, including theω-transitions from states 1 and 3. This results in
automatonH. Now state 3 is unreachable and can be removed, and states 1 and 2 can be
merged using observation equivalence to createH ′. It holds thatG≃{η}, /0 H ≃conf H ′.

Proposition 6. Let G = 〈A,Q,→G,Q◦〉 be an automaton andE ⊆ A, let q ∈ Q be a

blocking state, and letp
η→ q for someη ∈ E∪{τ}. Furthermore, letH = 〈A,Q,→H ,

Q◦〉 where→H = {(x,σ ,y) ∈→ | x 6= p}. ThenG≃E, /0 H.

Prop. 6 confirms that a state with aτ- or always enabled transitions to some other
blocking state can also be made blocking, by deleting all outgoing transitions (includ-
ing ω) from it. The Limited Certain Conflicts Rule should be applied repeatedly, as the
deletion of transitions may introduce new blocking states and thus new certain conflicts.

4.5 Selfloop Removal Rule

The final abstraction rule concerns selfloop-only events. To verify nonblocking, it is
enough to check if every state in the final synchronous composition of all automata can
reach a terminal state. Selfloops in the final synchronous composition have no effect on
the blocking nature of the system, since any path between twostates passes the same
states if all selfloops are removed from the path. So, the final synchronous composition
is nonblocking if and only if it is nonblocking with all selfloops removed.

Based on this observation, if an event is known to be selfloop-only in all automata
except the one being simplified, then selfloops with that event can be added or removed
freely to the automaton being simplified.

Rule 4 (Selfloop Removal Rule).If an eventλ is selfloop-only in all other automata,

then selfloop transitionsq
λ→ q can be added to or removed from any stateq.

This rule can be used to remove selfloops and save memory, sometimes reducing
the amount of shared events or allowing other rules to be used. If an event only appears
on selfloops in all automata, then it can be removed entirely. Furthermore, the addition
of selfloops to certain states may also be beneficial.

155

G1 0

12 β

β

λ

λ

G2 0

12

β

β

λ

G3 0

12 β

β

λ

λ

G4 01

2

β
λ G5 01

2

β

Fig. 4. Example of the removal and addition of selfloops.

Example 5. Fig. 4 shows a sequence of conflict-preserving changes to an automaton
containing the selfloop-only eventλ . First, theλ -selfloop inG1 is removed to createG2.
In G2, states 0 and 1 are close to observation equivalent, as they both have aβ -transition
to state 2; however 0 has aλ -transition to 1 and 1 does not. Yet, it is possible to add a
λ -selfloop to state 1 and createG3. Now states 0 and 1 are observation equivalent and
can be merged to createG4. Finally, theλ -selfloop inG4 is removed to createG5.

Proposition 7. Let G = 〈A,Q,→G,Q◦〉 and H = 〈A,Q,→H ,Q◦〉 be automata with
→H =→G∪{(q,λ ,q)} for someλ ∈ A. ThenG≃ /0,{λ} H.

Prop. 7 shows that the addition of a single selfloop preserves conflict equivalence.
it can be applied in reverse to remove selfloops, and it can beapplied repeatedly to add
or remove several selfloops in an automaton or in the entire system.

The implementation in Section 6 uses selfloop removal whenever applicable to
delete as many selfloops as possible. In addition, observation equivalence has been
modified to assume the presence of selfloops for all selfloop-only events in all states,
so as to achieve the best possible state-space reduction.

5 Finding Always Enabled and Selfloop-only Events

While the simplification rules in Section 4 are straightforward extensions of known
rules for standard conflict equivalence [10], their application requires the knowledge
about always enabled and selfloop-only events. Assume the system (2) encountered
during compositional verification is

G1‖G2‖ · · · ‖Gn , (4)

and automatonG1 is to be simplified. Then it is necessary to know always enabled
and selfloop-only events inT = G2 ‖ · · · ‖Gn. For each component automatonGi , such
events are easy to detect based on Def. 5 and 6. It also is a direct consequence of the
definitions that these properties carry over to the synchronous product.

Proposition 8. Let G1 andG2 be two automata. If an eventσ is always enabled (or
selfloop-only) inG1 andG2, thenσ is always enabled (or selfloop-only) inG1‖G2.

Given Prop. 8, an event can be considered as always enabled orselfloop-only if
it has this property for every automaton in (4) except the automaton being simplified.
When checking the individual automata, selfloop-only events are easily found by check-
ing whether an event in question only appears on selfloop transitions. For always en-
abled events, it is checked whether the event in question is enabled in every state, but
additional considerations can help to find more always enabled events.

156

G
0 1

⊥
τα

η G′

0 1

⊥
τα

η

η

Fig. 5.Finding an always enabled event.

Example 6. Consider automatonG in Fig. 5. It clearly holds that 0
η→, and 1

τ→ 0
η→

and thus 1
η⇒. Althoughη is not enabled in state⊥, this state is a blocking state and the

set of enabled events for blocking states is irrelevant—it isknown [18] thatG is conflict
equivalent toG′. Thenη can be considered as always enabled inG′ and thus also inG.

By definition, an always enabled eventη must be possible in every state of the envi-
ronmentT, except for blocking states according to Example 6. However, this condition
is stronger than necessary, asη typically is not always possible in the automatonG
being simplified. This observation leads toconditionallyalways enabled events.

Definition 12. Let G= 〈A,QG,→G,Q◦
G〉 andT = 〈A,QT ,→T ,Q◦

T〉 be two automata.
An eventσ ∈ A is conditionally always enabledfor G in T, if for all s∈ A∗ such that
Q◦

G
sσ⇒G and all statesxT ∈ QT such thatQ◦

T
s⇒T xT , it holds thatxT

σ⇒T .

An event is conditionally always enabled if the environmentT enables it in all states
where it is possible in the automatonG to be simplified. The following Prop. 9 shows
that the result of compositional nonblocking verification is also preserved with events
that are only conditionally always enabled.

Proposition 9. Let G, H, andT be automata, and letE andS be event sets such that
G ≃E,S H, andE is a set of conditionally always enabled events forG in T, andS is
a set of selfloop-only events forT. ThenG‖T is nonblocking if and only ifH ‖T is
nonblocking.

Conditionally always enabled events can be used like general always enabled events,
but they are more difficult to find. To check the condition of Def. 12, it is necessary to
explore the state space ofG‖T, which has the same complexity as a nonblocking check.
Yet, the condition is similar tocontrollability [6], which can often be verified quickly by
anincremental controllability check[4]. The incremental algorithm gradually composes
some of the automata of the system (4) until it can be ascertained whether or not a given
event is conditionally always enabled. In many cases, it gives a positive or negative
answer after composing only a few automata.

By running the incremental controllability check for a short time, some condition-
ally always enabled events can be found, while for others thestatus remains inconclu-
sive. Fortunately, it is not necessary to find all always enabled events. If the status of an
event is not known, it can be assumed that this event isnotalways enabled. The result of
nonblocking verification will still be correct, although itmay not use the best possible
abstractions. It is enough to only consider events as alwaysenabled or selfloop-only, if
this property can be established easily.

157

6 Experimental Results

The compositional nonblocking verification algorithm has been implemented in the
discrete event systems tool Waters/Supremica [1], which isfreely available for down-
load [28]. The software is further developed from [19] to support always enabled and
selfloop-only events.

The new implementation has been used to evaluate the algorithm by applying it to
the all models used for evaluation in [19] with at least 5·107 reachable states. The test
suite includes complex industrial models and case studies from various application areas
such as manufacturing systems, communication protocols, and automotive electronics.
The following list gives some details about these models.

aip Model of the automated manufacturing system of the Atelier Inter-́etablissement
de Productique [3]. The tests consider three early versions(aip0) based on [15],
and a more detailed version (aip1) according to [26], which has been modified for
a parametrisable number of pallets.

fencaiwon09 Model of a production cell in a metal-processing plant [9]. The supervi-
sors in this model are handwritten and differ slightly from the synthesised original.

ftechnik Flexible production cell model based on [16].
profisafe PROFIsafe field bus protocol model [17]. The task consideredhere is to ver-

ify nonblocking of the communication partners and the network in input-slave con-
figuration with sequence numbers ranging up to 4, 5, and 6.

tbed Model of a toy railroad system [14] in three different designs.
tip3 Model of the interaction between a mobile client and event-based servers of a

Tourist Information System [12].
verriegel Car central locking system, originally from the KORSYS project [25].
6link Models of a cluster tool for wafer processing [30].

Compositional verification repeatedly chooses a small set of automata, composes
them, applies abstraction rules to the synchronous composition, and replaces the com-
posed automata with the result. This is repeated until the remaining automata are con-
sidered too large, or there are only two automata left. The last two automata are not
simplified, because it is easier to check the nonblocking property directly by explicitly
constructing and exploring the synchronous composition.

A key aspect for a compositional verification algorithm is the way how automata
are selected to be composed. The implementation consideredhere follows a two-step
approach [10]. In the first step, somecandidatesets of automata are formed, and in
the second a most promising candidate is selected. For each event σ in the model, a
candidate is formed consisting of all automata withσ in their alphabet. Among these
candidates, the candidate with the smallest estimated number of states after abstraction
is selected. The estimate is obtained by multiplying the product of the state numbers
of the automata forming the candidate with the ratio of the numbers of events in the
synchronous composition of the candidate after and before removing any local events.
This strategy is calledMustL/MinS [10,19].

After identification of a candidate, its automata are composed, and then a sequence
of abstraction rules is applied to simplify it. First,τ-loops (Def. 10) and observation

158

equivalent redundant transitions [8] are removed from the automaton. This is followed
by the Only Silent Incoming Rule (Prop. 5), the Only Silent Outgoing Rule [10], the
Limited Certain Conflicts Rule (Prop. 6), Observation Equivalence (Prop. 3), the Non-
α Determinisation Rule [19], the Active Events Rule [10], andthe Silent Continuation
Rule (Prop. 4).

During simplification, all selfloops with selfloop-only events are deleted, and ob-
servation equivalence and the removal of observation equivalent redundant transitions
exploit selfloop-only events for further simplification. Furthermore, the Only Silent In-
coming Rule, the Limited Certain Conflicts Rule, and the Silent Continuation Rule
take always enabled events into account. For the experiments, the detection of always
enabled events and selfloop-only events can be turned on andoff separately, producing
four strategiesNone(no special events),SL (selfloop-only events),AE (always enabled
events), andSL/AE (selfloop-only and always enabled events).

The strategiesAE and SL/AE consider events as always enabled if they are al-
ways enabled in every automaton except the one being simplified. Two further strategies
SL/AE 〈200〉 andSL/AE 〈1000〉 also search for events that are conditionally always
enabled. This is done using an incremental controllabilitycheck [4] that tries to com-
pose an increasing part of the model until it is known whetheror not an event is always
enabled, or until a state limit of 200 or 1000 states is exceeded; in the latter case, the
check is abandoned and the event is assumed to be not always enabled.

For each model, Table 1 shows the total number of reachable states in the syn-
chronous composition (Size) if known, and whether or not themodel is nonblock-
ing (Res). Then it shows for each strategy, the number of states in the largest au-
tomaton encountered during abstraction (Peak States), thenumber of states in the syn-
chronous composition explored after abstraction (Final States), and the total verification
time (Time). The best result in each category is highlightedin bold.

In some cases, compositional nonblocking verification terminates early, either be-
cause all reachable states of all automata are known to be terminal, or because some
automaton has no reachable terminal states left. In these cases, the final synchronous
composition is not constructed and the final states number isshown as 0.

All experiments are run on a standard desktop computer usinga single core 3.3 GHz
CPU and 8 GB of RAM. The experiments are controlled by state limits. If during ab-
straction the synchronous composition of a candidate has more than 100,000 states, it
is discarded and another candidate is chosen instead. The state limit for the final syn-
chronous composition after abstraction is 108 states. If this limit is exceeded, the run is
aborted and the corresponding table entries are left blank.

The results in Table 1 demonstrate that compositional verification can check the
nonblocking property of systems with up to 1014 states in a matter of seconds. The
exploitation of always enabled and selfloop-only events reduces the peak or final state
numbers in many cases. This is important as these numbers arethe limiting factors in
compositional verification.

Unfortunately, the runtimes rarely improve as the smaller state numbers are out-
weighed by the effort to find always enabled and selfloop-only events. The search has
to be repeated after each abstraction step, because each abstraction can produce new
always enabled or selfloop-only events, and the cost increases with the number of steps

159

Table 1.Experimental results.

None SL AE
Peak Final Time Peak Final Time Peak Final Time

Model Size Res states states [s] states states [s] states states [s]

aip0aip 1.02·109 yes 1090 5 1.2 1090 5 1.3 1090 5 1.3
aip0alps 3.00·108 no 18 16 0.2 18 16 0.2 18 16 0.3
aip0tough 1.02·1010 no 96049 19833682 82.696049 17066874 47.196049 19829534 76.2
aip1efa〈3〉 6.88·108 yes 40290 1878708 12.5 40290 1878708 12.740290 1878708 13.2
aip1efa〈16〉 9.50·1012 no 65520 13799628 21.8 65520 13799628 22.065520 13799628 22.3
aip1efa〈24〉 1.83·1013 no 6384 13846773 18.1 6384 13846773 18.1 6384 13846773 18.4
fencaiwon09 1.03·108 yes 10421 105 2.3 10421 105 2.410421 105 2.4
fencaiwon09b 8.93·107 no 10421 81 1.910421 81 1.9 10421 81 2.0
ftechnik 1.21·108 no 172 0 0.3 172 0 0.3 172 0 0.4
profisafe i4 yes 74088 409 84.2
profisafe i5 yes 98304 57888 68.5
profisafe i6 yes 55296 148284 51.2
tbed ctct 3.94·1013 no 43825 0 14.1 43825 0 14.243825 0 16.3
tbed hisc 5.99·1012 yes 1757 33 2.4 1757 33 2.4 1705 33 2.6
tbed valid 3.01·1012 yes 50105 3839 9.5 50105 3580 9.750105 2722 10.3
tip3 2.27·1011 yes 6399 173 3.1 6399 173 3.2 12303 153 4.5
tip3 bad 5.25·1010 no 1176 14 0.9 1254 14 0.9 1176 0 1.1
verriegel3 9.68·108 yes 3303 2 1.6 3303 2 1.3 3349 2 1.7
verriegel3b 1.32·109 no 1764 0 1.0 1764 0 1.1 1795 0 1.1
verriegel4 4.59·1010 yes 2609 2 1.3 2609 2 1.4 2644 2 1.3
verriegel4b 6.26·1010 no 1764 0 1.1 1764 0 1.2 1795 0 1.2
6linka 2.45·1014 no 64 0 0.4 64 0 0.4 64 0 0.4
6linki 2.75·1014 no 61 0 0.3 61 0 0.3 61 0 0.3
6linkp 4.43·1014 no 32 0 0.3 32 0 0.3 32 0 0.3
6linkre 6.21·1013 no 118 12 0.5 118 12 0.5 106 0 0.5

SL/AE SL/AE 〈200〉 SL/AE 〈1000〉
Peak Final Time Peak Final Time Peak Final Time

Model Size Res states states [s] states states [s] states states [s]

aip0aip 1.02·109 yes 1090 5 1.2 892 5 24.5 892 5 31.9
aip0alps 3.00·108 no 18 16 0.3 18 16 1.4 18 16 1.4
aip0tough 1.02·1010 no 96049 17063170 46.096049 17063170 46.7 96049 17063170 105.8
aip1efa〈3〉 6.88·108 yes 40290 1878708 13.232980 1726127 17.231960 1707905 40.8
aip1efa〈16〉 9.50·1012 no 65520 13799628 22.265520 13799628 28.965520 13799628 48.0
aip1efa〈24〉 1.83·1013 no 6384 13846773 18.2 5313 13846773 23.8 5292 13846773 42.3
fencaiwon09 1.03·108 yes 10421 105 2.410421 105 3.510421 78 6.3
fencaiwon09b 8.93·107 no 10421 81 1.910421 62 3.4 10421 62 5.7
ftechnik 1.21·108 no 172 0 0.4 172 0 4.3 172 0 5.4
profisafe i4 yes 49152 9864 67.2 49152 9864 630.2 49152 9864 2873.7
profisafe i5 yes 98304 12070 71.9 98304 12070 1181.6 98304 12070 2969.0
profisafe i6 yes 52224 628131 84.952224 628131 1830.252224 628131 4179.5
tbed ctct 3.94·1013 no 43825 0 16.543825 0 20.843825 0 43.6
tbed hisc 5.99·1012 yes 1705 33 2.5 1705 33 23.6 1705 138 90.1
tbed valid 3.01·1012 yes 50105 2621 10.0 50105 2621 14.6 50105 2621 28.3
tip3 2.27·1011 yes 12303 153 4.512303 153 6.012303 149 6.4
tip3 bad 5.25·1010 no 1231 0 1.1 1231 0 2.9 1231 0 3.7
verriegel3 9.68·108 yes 3349 2 1.4 2644 2 6.0 2644 2 9.7
verriegel3b 1.32·109 no 1795 0 1.2 1795 0 5.8 1795 0 8.4
verriegel4 4.59·1010 yes 2644 2 1.5 2644 2 8.6 2644 2 15.4
verriegel4b 6.26·1010 no 1795 0 1.4 1795 0 8.2 1795 0 13.2
6linka 2.45·1014 no 64 0 0.4 64 0 2.2 64 0 2.7
6linki 2.75·1014 no 61 0 0.3 61 0 1.7 61 0 2.0
6linkp 4.43·1014 no 32 0 0.3 32 0 1.7 32 0 2.0
6linkre 6.21·1013 no 106 0 0.5 106 0 2.3 106 0 2.7

160

and events. Conditionally always enabled events can produce better abstractions, but it
takes a lot of time to find them.

There are also cases where the state numbers increase with always enabled and self-
loop-only events. A decrease in the final state number after simplification can come at
the expense of increase in the peak state number during simplification. With more pow-
erful simplification algorithms, larger automata may fall under the state limits. Also, dif-
ferent abstractions may trigger different candidate selections in following steps, which
are not always optimal. In some cases, the merging of states may prevent observation
equivalence from becoming applicable in later steps.

Yet, the large PROFIsafe models [17] can only be verified compositionally with self-
loop-only events. By adding always enabled and selfloop-only events to the available
tools, it becomes possible to solve problems that are not solvable otherwise.

7 Conclusions

It has been shown how conflict-preserving abstraction can beenhanced by taking into
account additional information about the context in which an automaton to be abstracted
is used. Specifically,always enabledandselfloop-onlyevents are easy to discover and
help to produce simpler abstractions. Experimental results demonstrate that these spe-
cial events can make it possible to verify the nonblocking property of more complex
discrete event systems. In future work, it is of interest whether the algorithms to detect
and use always enabled and selfloop-only events can be improved, and whether other
conflict-preserving abstraction methods can also be generalised.

References

1. Åkesson, K., Fabian, M., Flordal, H., Malik, R.: Supremica—an integrated environment for
verification, synthesis and simulation of discrete event systems. In: Proc. 8th Int. Workshop
on Discrete Event Systems, WODES ’06. pp. 384–385. Ann Arbor, MI, USA (Jul 2006)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press(2008)
3. Brandin, B., Charbonnier, F.: The supervisory control of the automated manufacturing sys-

tem of the AIP. In: Proc. Rensselaer’s 4th Int. Conf. Computer Integrated Manufacturing and
Automation Technology. pp. 319–324. Troy, NY, USA (1994)

4. Brandin, B.A., Malik, R., Malik, P.: Incremental verification and synthesis of discrete-event
systems guided by counter-examples. IEEE Trans. Control Syst. Technol. 12(3), 387–401
(May 2004)

5. Brookes, S.D., Rounds, W.C.: Behavioural equivalence relations induced by program-
ming logics. In: Proc. 16th Int. Colloquium on Automata, Languages, andProgramming,
ICALP ’83. LNCS, vol. 154, pp. 97–108. Springer (1983)

6. Cassandras, C.G., Lafortune, S.: Introduction to Discrete EventSystems. Springer, 2 edn.
(2008)

7. De Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. Theoretical Comput.
Sci. 34(1–2), 83–133 (Nov 1984)

8. Eloranta, J.: Minimizing the number of transitions with respect to observation equivalence.
BIT 31(4), 397–419 (1991)

9. Feng, L., Cai, K., Wonham, W.M.: A structural approach to the non-blocking supervisory
control of discrete-event systems. Int. J. Adv. Manuf. Technol. 41, 1152–1168 (2009)

161

10. Flordal, H., Malik, R.: Compositional verification in supervisory control. SIAM J. Control
and Optimization 48(3), 1914–1938 (2009)

11. Graf, S., Steffen, B.: Compositional minimization of finite state systems. In: Proc. 1990
Workshop on Computer-Aided Verification. LNCS, vol. 531, pp. 186–196. Springer (Jun
1990)

12. Hinze, A., Malik, P., Malik, R.: Interaction design for a mobile context-aware system using
discrete event modelling. In: Proc. 29th Australasian Computer ScienceConf., ACSC ’06.
pp. 257–266. Hobart, Australia (2006)

13. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
14. Leduc, R.J.: PLC Implementation of a DES Supervisor for a Manufacturing Testbed: An

Implementation Perspective. Master’s thesis, Dept. of Electrical Engineering, University of
Toronto, ON, Canada (1996),http://www.cas.mcmaster.ca/~leduc

15. Leduc, R.J.: Hierarchical Interface-based Supervisory Control. Ph.D. thesis, Dept. of Electri-
cal Engineering, University of Toronto, ON, Canada (2002),http://www.cas.mcmaster.

ca/~leduc

16. Lewerentz, C., Linder, T.: Case Study “Production Cell”, LNCS, vol. 891. Springer (1995)
17. Malik, R., Mühlfeld, R.: A case study in verification of UML statecharts: the PROFIsafe

protocol. J. Universal Computer Science 9(2), 138–151 (Feb 2003)
18. Malik, R.: The language of certain conflicts of a nondeterministic process. Working Paper

05/2010, Dept. of Computer Science, University of Waikato, Hamilton, New Zealand (2010)
19. Malik, R., Leduc, R.: Compositional nonblocking verification using generalised nonblocking

abstractions. IEEE Trans. Autom. Control 58(8), 1–13 (Aug 2013)
20. Malik, R., Streader, D., Reeves, S.: Conflicts and fair testing. Int.J. Found. Comput. Sci.

17(4), 797–813 (2006)
21. Milner, R.: Communication and concurrency. Series in Computer Science, Prentice-Hall

(1989)
22. Pena, P.N., Cury, J.E.R., Lafortune, S.: Verification of nonconflict of supervisors using ab-

stractions. IEEE Trans. Autom. Control 54(12), 2803–2815 (2009)
23. Pilbrow, C.: Compositional nonblocking verification with always enabled events and self-

loop-only events. Honours project report, Dept. of Computer Science, University of Waikato
(2013), to appear

24. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proc. IEEE 77(1),
81–98 (Jan 1989)

25. KORSYS Project:http://www4.in.tum.de/proj/korsys/
26. Song, R.: Symbolic Synthesis and Verification of Hierarchical Interface-based Supervisory

Control. Master’s thesis, Dept. of Computing and Software, McMaster University, Hamilton,
ON, Canada (2006),http://www.cas.mcmaster.ca/~leduc

27. Su, R., van Schuppen, J.H., Rooda, J.E., Hofkamp, A.T.: Nonconflict check by using se-
quential automaton abstractions based on weak observation equivalence. Automatica 46(6),
968–978 (Jun 2010)

28. Supremica:http://www.supremica.org, the official website for the Supremica project
29. Valmari, A.: Compositionality in state space verification methods. In: Proc. 18th Int. Conf.

Application and Theory of Petri Nets. LNCS, vol. 1091, pp. 29–56. Springer, Osaka, Japan
(Jun 1996)

30. Yi, J., Ding, S., Zhang, M.T., van der Meulen, P.: Throughputanalysis of linear cluster tools.
In: Proc. 3rd Int. Conf. Automation Science and Engineering, CASE 2007. pp. 1063–1068.
Scottsdale, AZ, USA (Sep 2007)

162

Formalizing and Verifying Function Blocks
using Tabular Expressions and PVS

Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

McMaster Centre for Software Certification, McMaster University, Canada L8S 4K1
{pangl,wangcw,lawford,wassyng}@mcmaster.ca

Abstract. Many industrial control systems use programmable logic con-
trollers (PLCs) since they provide a highly reliable, off-the-shelf hardware
platform. On the programming side, function blocks (FBs) are reusable
components provided by the PLC supplier that can be combined to im-
plement the required system behaviour. A higher quality system may be
realized if the FBs are pre-certified to be compliant with an international
standard such as IEC 61131-3. We present an approach to formalizing FB
requirements using tabular expressions, and to verifying the correctness
of the FBs implementations in the PVS proof environment. We applied
our approach to the example FBs of IEC 61131-3 and identified issues in
the standard: ambiguous behavioural descriptions, missing assumptions,
and erroneous implementations.

Keywords: critical systems, formal specification, formal verification,
function blocks, tabular expressions, IEC 61131-3, PVS

1 Introduction

Many industrial control systems have replaced traditional analog equipment by
components that are based upon programmable logic controllers (PLCs) to ad-
dress increasing market demands for high quality [1]. Function blocks (FBs) are
basic design units that implement the behaviour of a PLC, where each FB is a
reusable component for building new, more sophisticated components or systems.
The search for higher quality may be realized if the FBs are pre-certified with
respect to an international standard such as IEC 61131-3 [8, 9]. Standards such
as DO-178C (in the aviation domain) and IEEE 7-4.3.2 (in the nuclear domain)
list acceptance criteria of mission- or safety-critical systems for practitioners to
comply with. Two important criteria are that 1) the system requirements are
precise and complete; and that 2) the system implementation exhibits behaviour
that conforms to these requirements. In one of its supplements, DO-178C ad-
vocates the use of formal methods to construct, develop, and reason about the
mathematical models of system behaviours.

Tabular expressions [20, 21] are a way to document system requirement that
have proven to be both practical and effective in industry [13, 25]. PVS [18]
is a non-commercial theorem prover, and provides an integrated environment
with mechanized support for writing specifications using tabular expressions and

163

2 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

(higher-order) predicates, and for (interactively) proving that implementations
satisfy the tabular requirements using sequent-style deductions. In this paper we
report on using tabular expressions to formalize the requirements of FBs and on
using PVS to verify their correctness (with respect to tabular requirements).

As a case study, we have formalized1 23 of 29 FBs listed in IEC 61131-3 [8, 9],
an important standard with over 20 years of use on critical systems running on
PLCs. There are two compelling reasons for formalizing the existing behavioural
descriptions of FBs supplied by IEC 61131-3. First, formal descriptions such as
tabular expressions force tool vendors and users of FBs to have the same inter-
pretations of the expected system behaviours. Second, formal descriptions are
amenable to mechanized support such as PVS to verify the conformance of can-
didate implementations to the high-level, input-output requirements. Currently
IEC 61131-3 lacks an adequate, formal language for describing the behaviours
of FBs and for arguing about their correctness. Unfortunately, IEC 61131-3 uses
FB descriptions that are too close to the level of hardware implementations.
For the purpose of this paper, we focus on FBs that are described in the more
commonly used languages of structured text (ST) and function block diagrams
(FBDs). Note that two versions of IEC 61131-3 are cited here. The earlier ver-
sion [8] has been in use since 2003. Most of the work reported on in this paper
relates to this version. When the new version [9] was issued, we expected to find
that the problems we had discovered in the earlier version had been corrected.
However, we found that many of the example FBs had been removed from the
standard and the remaining FBs are still problematic.

Logical Implication
Verification in PVS

Logical Implication
Verification in PVS

By Tabular
Expressions

(1)

FBD Implementation

ST Implementation

Natural Language
Description

IEC 61131-3 Standard

FBD Specification ST Specification
Equivalence

PVS Verification Environment

FB Requirements

Correctness,
consistency

Correctness,
consistency

Formalization

Formalization

Formalization

Manual translation

PVS verification

Fig. 1: Framework

We now summarize our approach and contributions with reference to Fig. 1.
As shown on the left, a function block will typically have a natural language
description of the block behaviour accompanied by a detailed implementation in

1 PVS files are available at http://www.cas.mcmaster.ca/˜lawford/papers/

FTSCS2013. All verifications are conducted using PVS 5.0.

164

Formalizing and Verifying FBs using Tabular Expressions and PVS 3

the ST or FBD description, or in some cases both. Based upon all of this infor-
mation we create a black box tabular requirements specification in PVS for the
behaviour of the FB as described in Sec. 3.2. The ST and FBD implementations
are formalized as predicates in PVS, again making use of tables, as described in
Sec. 3.1. In the case when there are two implementations for an FB, one in FBD
and the other in ST, we attempt to prove their (functional) equivalence in PVS.
For any implementation we attempt to prove the correctness and consistency
with respect to the FB requirements in PVS (Sec. 4).

Using our approach, we have identified a number of issues in IEC 61131-3
and suggest resolutions (Sec. 5), which are summarized below:

1. The behaviour of the pulse timer is characterized through a timing diagram
with at least two scenarios unspecified.

2. The description of the sr block (a set-dominant latch) lacks an explicit time
delay on the intermediate values being computed and fed back. By introduc-
ing a delay FB, we verified the correctness of sr.

3. The description of the up-down counter ctud permits unintuitive behaviours.
We eliminate them by incorporating a relation on its three inputs (i.e., low
limit, high limit, and preset value) in the tabular requirement of ctud.

4. The description of the limits alarm block allows the low limit and high limit
alarms to be tripped simultaneously. We resolve this by explicitly constrain-
ing the two hysteresis zones to be both disjoint and ordered.

5. The ST and FBD implementations for the stack int block (stack of inte-
gers) failed the equivalence proof. We identified a missing FB in the FBD
implementation, and then discharged the proof.

We will discuss issues (1), (2), and (3) in further detail in Sec. 5. Details of
the remaining issues that we omit are available in an extended report [19]. In
the next section we discuss background materials: the IEC 61131-3 Standard,
tabular expressions, and PVS.

2 Preliminaries

2.1 IEC 61131-3 Standard Function Blocks Programmable logic con-
trollers (PLCs) are digital computers that are widely utilized in real-time and
embedded control systems. In the light of unifying the syntax and semantics of
programming languages for PLCs, the International Electrotechnical Commit-
tee (IEC) first published IEC 61131-3 in 1993 with revisions in 2003 [8] and
2013 [9]. The issues of ambiguous behaviours, missing assumptions, and erro-
neous behavioural descriptions that we found have not been resolved in the
latest edition.

We applied our methodology to the standard functions and function blocks
listed in Annex F of IEC 61131-3 (1993). FBs are more flexible than standard
functions in that they allow internal states, feedback paths and time-dependent
behaviours. We distinguish between basic and composite FBs: the former consist
of standard functions only, while the latter can be constructed from standard

165

4 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

functions and any other pre-developed basic or composite FBs. We focus on two
programming languages that are covered in IEC 61131-3 for writing behavioural
descriptions of FBs: structured text (ST) and function block diagrams (FBDs).
ST syntax is block structured and resembles that of Pascal, while FBDs visualize
inter-connections or data flows between inputs and outputs of block components.

Fig. 2 shows the FBD of the limits alarm block, consisting of declarations
of inputs and outputs, and the definition of computation. An alarm monitors
the quantity of some variable x, subject to a low limit l and a high limit h,
with the hysteresis band of size eps. The body definition visualizes how ultimate
and intermediate outputs are computed, e.g., output ql is obtained by computing
HYSTERESIS(l + (eps / 2.0), x, eps). There are five internal component blocks
of limits alarm: addition (+), subtraction(−), division (/), logical disjunction
(≥ 1), and the hysteresis effect (hysteresis). The internal connectives are w1, w2

and w3. The precise input-output tabular requirement is discussed in Sec. 3.2.

(* DECLARATION *)
+--------+
|LIMITS_ |
| ALARM |

REAL --|h qh|-- BOOL
REAL |x q|-- BOOL
REAL --|l ql|-- BOOL
REAL --|eps |

+--------+

INPUTS:
h : high limit
x : variable value
l : low limit
eps: hysteresis

OUTPUTS:
qh : high flag
q : alarm output
ql : low flag

(* FBD of BODY DEFINITION *)
HIGH_ALARM

+------------+
| HYSTERESIS |

x------------------------+--|xin1 q|--+----------qh
+---+ w2| | | |

h----------------| - |------|xin2 | |
+---| | | | | |
| +---+ | | | |
+--------------|eps | | +-----+

+---+w1| | +------------+ +--| >=1 |
eps --| / |--| | | |--q
2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+
| +---+ w3| | HYSTERESIS | |

l ---------------| + |------|xin1 q|--+-----------ql
| | | | | |
+---| | +--|xin2 |
| +---+ | |
+--------------|eps |

+------------+

Fig. 2: Limits alarm standard declaration and FBD implementation [8]

2.2 Tabular Expressions Tabular expressions [20, 21] (a.k.a. function ta-
bles) are an effective approach to describing conditionals and relations, thus
ideal for documenting many system requirements. They are arguably easier to
comprehend and to maintain than conventional mathematical expressions. Tab-
ular expressions have well-defined formal semantics (e.g., [10]), and they are
useful both in inspections and in testing and verification [25]. For our purpose of
capturing the input-output requirements of function blocks in IEC 61131-3, the
tabular structure in Fig. 3 suffices: the input domain and the output range are
partitioned into rows of, respectively, the first column (for input conditions) and
the second column (for output results). The input column may be sub-divided
to specify sub-conditions.
We may interpret the above tabular structure as a list of “if-then-else” pred-
icates or logical implications. Each row defines the input circumstances under

166

Formalizing and Verifying FBs using Tabular Expressions and PVS 5

Result
Condition f

C1

C1.1 res1
C1.2 res2
.
C1.m resm
.

Cn resn

IF C1

IF C1.1 THEN f = res1
ELSEIF C1.2 THEN f = res2
...

ELSEIF C1.m THEN f = resm
ELSEIF ...

ELSEIF Cn THEN f = resn

Fig. 3: Semantics of Horizontal Condition Table (HCT)

which the output f is bound to a particular result value. For example, the first
row corresponds to the predicate (C1 ∧ C1.1 ⇒ f = res1), and so on. In docu-
menting input-output behaviours using horizontal condition tables (HCTs), we
need to reason about their completeness and disjointness. Suppose there is no
sub-condition, completeness ensures that at least one row is applicable to every
input, i.e., (C1 ∨ C2 ∨ · · · ∨ Cn ≡ True). Disjointness ensures that the rows do
not overlap, e.g., (i 6= j ⇒ ¬(Ci ∧ Cj)). Similar constraints apply to the sub-
conditions, if any. These properties can often be easily checked automatically
using SMT solvers or a theorem prover such as PVS [6].

2.3 PVS Prototype Verification System (PVS) [18] is an interactive environ-
ment for writing specifications and performing proofs. The PVS specification
language is based on classical higher-order logic. The syntactic constructs that
we use the most are “if-then-else” predicates and tables, which we will explain
as we use them. An example of using tabular expressions to specify and verify
the Darlington Nuclear Shutdown System (SDS) in PVS can be found in [13].

PVS has a powerful interactive proof checker to perform sequent-style deduc-
tions. The completeness and disjointness properties are generated automatically
as Type Correctness Conditions (TCCs) to be discharged. We will discuss a
found issue (Sec. 5) where the ST implementation supplied by IEC 61131-3 is
formalized as a PVS table but its disjointness TCC failed to be discharged. In
this paper we omit proof details that are available in an extended report [19].

As PLCs are commonly used in real-time systems, time modelling is a critical
aspect in our formalization. We consider a discrete-time model in which a time
series consists of equally spaced sample times or “ticks”in PVS:

delta_t: posreal
time: TYPE+ = nonneg_real
tick: TYPE = {t: time | EXISTS (n: nat): t = n * delta_t}

Constant delta_t is a positive real number. Here time is the set of non-negative
real numbers, and tick is the set of time sample times [7].

3 Formalizing Function Blocks using Tabular Expressions

Below we present a formal approach to defining standard functions and function
blocks in IEC 61131-3 using tabular expressions.

167

6 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

3.1 Formalizing IEC 61131-3 Function Block Implementations We
perform formalization at levels of standard functions, basic function blocks (FBs),
and composite FBs. Similar to [4], we formulate each standard function or func-
tion block as a predicate, characterizing its input-output relation.

Standard Functions. IEC 61131-3 defines eight groups of standard functions,
including: 1) data type conversion; 2) numerical; 3) arithmetic; 4) bit-string; 5)
selection and comparison; 6) character string; 7) time and date types; and 8)
enumerated data types. In general, we formalize the behaviour of a standard
function f as a Boolean function:

f(i1, i2, . . . , im, o1, o2, . . . , on) : bool ≡ R(i1, i2, . . . , im, o1, o2, . . . , on)

where predicate R characterizes the precise relation on the m inputs and the
n outputs of standard function f . Our formalization covers both timed and
untimed behaviours of standard functions. As an example of a timed function,
consider function move that takes as inputs an enabling condition en and an
integer in, and that outputs an integer out. The behaviour of move is time-
dependent: at the very first clock tick, out is initialized to zero; otherwise, at
time instant t (t > 0), out is either equal to in at time t, if condition en holds at
t, or otherwise out is equal to in at time t − α ∗ δ (α = 1, 2, . . .) where en was
last enabled (i.e., a case of “no change” for out). More precisely, we translate the
input-output relation of function move into PVS:

move(en:[tick->bool],i,out:[tick->int])(t:tick): bool =
FORALL t: out(t) = IF t = 0 THEN 0

ELSE TABLE +-------------------------+
| en(t) | i(t) ||

+-------------------------+

| NOT en(t)| out(pre(t)) ||
+-------------------------+ ENDTABLE

ENDIF

We characterize the temporal relation between in and out as a universal quan-
tification over discrete time instants. Functions [tick->bool] and [tick->int]
capture the input and output values at different time instants. The behaviour at
each time instant t is expressed as an IF...THEN...ELSE...ENDIF statement.
Construct TABLE...ENDTABLE that appears in the ELSE branch exemplifies the
use of tabular expressions as part of a predicate. The main advantage of embed-
ding tables in predicates is that the PVS prover will generate proof obligations
for completeness and disjointness accordingly.

Untimed behaviour, on the other hand, abstracts from the input-output re-
lation at the current time instant, which makes first-order logic suffice for the
formalization. For example, consider the standard function add that is used as an
internal component of the FB limits alarm (see Fig. 2), which has the obvious
formalization: add(in1, in2, out : int) : bool ≡ out = in1 + in2. Incorporating
the output value out as part of the function parameters makes it possible to
formalize basic FBs with internal states, or composite FBs. For basic FBs with

168

Formalizing and Verifying FBs using Tabular Expressions and PVS 7

no internal states, we formalize them as function compositions of their internal
blocks. As a result, we also support a version of add that returns an integer
value: add(in1, in2 : int) : int = in1 + in2.

Basic Function Blocks. A basic function block (FB) is an abstraction com-
ponent that consists of standard functions. When all internal components of a
basic FB are functions, and there are no intermediate values to be stored, we
formalize the output as the result of a functional composition of the internal
functions. For example, given FB weigh, which takes as inputs a gross weight gw
and a tare weight tw and returns the net weight nw, we formalize weigh by defin-
ing the output nw as nw = int2bcd(subtract(bcd2int(gross), tare)), where int2bcd
and bcd2int are standard conversion functions between binary-coded decimals
and integers. On the other hand, to formalize a basic FB that has internal states
to be stored, we take the conjunction of the predicates that formalize its internal
functions. We formalize composite FBs in a similar manner.

Composite Function Block. Each composite FB contains as components
standard functions, basic FBs, or other pre-developed composite FBs. For exam-
ple, limits alarm (Sec. 2) is a composite FB consisting of standard functions and
two instances of the pre-developed composite FB hysteresis. Our formalization
of each component as a predicate results in compositionality : a predicate that
formalizes a composite FB is obtained by taking the conjunction of those that
formalize its components. IEC 61131-3 uses structured texts (ST) and function
block diagrams (FBD) to describe composite FBs.
Remark. Predicates that formalize basic or composite FBs represent their black-
box input-output relations. Since we use function tables in PVS to specify these
predicates, their behaviours are deterministic. This allows us to easily compose
their behaviours using logical conjunction. The conjunction of deterministic com-
ponents is functionally deterministic.

Formalizing Composite FB Implementation: ST. We translate an ST
implementation supplied by IEC 61131-3 into its equivalent expression in PVS.
We illustrate (parts of2) our ST-to-PVS translation using concrete examples.

Pattern 1 illustrates that we transform sequential compositions (;) into log-
ical conjunctions (&). We write a−1 to denote the value of variable a at the
previous time tick (i.e., before the current function block is executed). In gen-
eral, we constrain the relationship between each variable v and v−1 to formalize
the effect of its containing function block.

ST expressions PVS predicates

1 basic assignments
a := a + b; c := NOT (a > 0) a = a−1 + b & c = NOT (a > 0)

Pattern 2 illustrates that we reconstruct conditional statement by taking the
conjunction of the assignment effect of each variable; each variable assignment
is formalized via a tabular expression. How variables are used in the tables is
used to derive the order of evaluation. For example, b is evaluated before c to
compute c = a+ b.

2 Other translation patterns can be found in [19].

169

8 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

2 conditional assignments

IF z THEN
b := c * 3; c := a + b;

ELSE
b := b + c; e := b - 1;

END_IF

b = TABLE | z | c−1 * 3 ||

| NOT z | b−1 + c ||

ENDTABLE &
c = TABLE | z | a + b ||

| NOT z | c−1 ||

ENDTABLE &
e = TABLE | NOT z | b - 1 ||

| z | e−1 ||

ENDTABLE

For the above example, an “if-then-else” conditional that returns the conjunc-
tion of the variable update predicates more closely correspond to the original
ST implementation may instead be used. In general though when assignment
conditions become more complicated, we feel it is clearer to isolate the update
of each variable.

Pattern 3 illustrates that we translate each invocation of a function block FB
into an instantiation of its formalizing predicate FB_REQ, where the return value
of FB (i.e., FB.output) is incorporated as an argument of FB_REQ.

3 function block invocations, reuse

FB1(in_1 := a, in_2 := b);

FB2(in_1 := FB1.output);
out := FB2.output;

FB1_REQ(a, b, fb1_out) &

FB2_REQ(fb1_out, fb2_out) &

out = fb2_out

Formalizing Composite FB Implementation: FBD. To illustrate the case
of formalizing a FBD implementation supplied by IEC 61131-3, let us consider
the following FBD of a composite FB and its formalizing predicate in Fig. 4:

B
1 B

2

B
3

 B
4

i
1

i
2

o
1

w
1

w
3

w
2

o
2

FBD IMPL(i1, i2, o1, o2)
≡ ∃w1, w2, w3•

B1 REQ(i2, w1)
∧ B2 REQ(w1, w3, w2)
∧ B3 REQ(i1, w2, o1)
∧ B4 REQ(o1, w3, o2)

Fig. 4: Composite FB implementation in FBD and its formalizing predicate

Fig. 4 consists of four internal blocks, B1, B2, B3, and B4, that are already
formalized (i.e., their formalizing predicates B1 REQ, . . . , B4 REQ exist). The
high-level requirement (as opposed to the implementation supplied by IEC 61131-
3) for each internal FB constrains upon its inputs and outputs, documented by
tabular expressions (see Sec. 3.2). To describe the overall behaviour of the above
composite FB, we take advantage of our formalization being compositional. In
other words, we formalize a composite FB by existentially quantifying over the

170

Formalizing and Verifying FBs using Tabular Expressions and PVS 9

list of its inter-connectives (i.e., w1, w2 and w3), such that the conjunction of
predicates that formalize the internal components hold.

For example, we formalize the FBD implementation of block limits alarm
(Sec. 2) as a predicate LIMITS_ALARM_IMPL in PVS:

LIMITS_ALARM_IMPL(h,x,l,eps,qh,q,ql)(t): bool =
FORALL t:
EXISTS (w1,w2,w3):
div(eps(t),2.0,w1(t)) & sub(h(t),w1(t),w2(t)) &

add(l(t),w1(t),w3(t)) & disj(qh(t),ql(t),q(t)) &

HYSTERESIS_req_tab(x,w2,w1,qh)(t) & HYSTERESIS_req_tab(w3,x,w1,ql)(t)

We observe that predicate LIMITS_ALARM_IMPL, as well as those for the internal
components, all take a time instant t ∈ tick as a parameter. This is to account
for the time-dependent behaviour, similar to how we formalized the standard
function move in the beginning of this section.

The above predicates that formalize the internal components, e.g., predicate
HYSTERESIS_req_tab, do not denote those translated from the ST implementa-
tion of IEC 61131-3. Instead, as one of our contributions, we provide high-level,
input-output requirements that are missing from IEC 61131-3 (to be discussed
in the next section). Such formal, compositional requirement are developed for
the purpose of formalizing and verifying sophisticated, composite FBs.

3.2 Formalizing Requirements of Function Blocks As stated, IEC 61131-
3 supplies low-level, implementation-oriented ST or FBD descriptions for func-
tion blocks. For the purpose of verifying the correctness of the supplied imple-
mentation, it is necessary to obtain requirements for FBs that are both complete
(on the input domain) and disjoint (on producing the output). Tabular expres-
sions (in PVS) are an excellent notation for describing such requirements. Our
method for deriving the tabular, input-output requirement for each FB is to
partition its input domain into equivalence classes, and for each such input con-
dition, we consider what the corresponding output from the FB should be.

As an example, we consider the requirement for function block limits alarm
(Sec. 2). The expected input-output behaviour and its tabular requirement
(which constrains the relation between inputs x, h, l, eps and outputs q, qh,
ql) is depicted in Fig. 5. Our formalization process revealed the need for two
missing assumptions from IEC 61131-3: eps > 0 and l + eps < h − eps. They
allow us to ensure that the two hysteresis zones [l, l + eps] and [h − eps, h] are
non-empty, disjoint and ordered [19].

Let predicates f_qh, f_ql, and f_q be those that formalize, respectively, the
table for qh, ql and q, we then translate the above requirement into PVS as:

LIMITS_ALARM_REQ(h,x,l,eps,qh,q,ql)(t): bool =
f_qh(x,h,eps,qh)(t) & f_ql(x,l,eps,ql)(t) & f_q(qh,ql,q)(t)

By using the function definitions of q, qh and ql, we can verify the correctness
of the FBD implementation of limits alarm, formalized as the predicate above.
This process can be generalized to verify other FBDs in IEC 61131-3.

171

10 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

time

h

h-(eps/2)

qh=true

NC(No change)

l

l+(eps/2)

h-eps

l+eps

qh=false

ql=false

ql=true

NC(No change)

x

Result
Condition q

qh ∨ ql True

¬(qh ∨ ql) False

assume: l + eps < h− eps

Result
Condition qh

x > h True

h - eps ≤ x ≤ h NC

x < h − eps False

assume: eps > 0

Result
Condition ql

x < l True

l ≤ x ≤ l + eps NC

x > l + eps False

assume: eps > 0

Fig. 5: Limits alarm requirement in tabular expression

4 Verifying Function Blocks in PVS

We now present the two kinds of verification we perform.

4.1 Verifying the Correctness of an Implementation Given an imple-
mentation predicate I, our correctness theorem states that, if I holds for all
possible inputs and outputs, then the corresponding requirement predicate R
also holds. This corresponds to the proofs of correctness shown in Fig. 1. For
example, to prove that the FBD implementation of block limits alarm in Sec. 3.1
is correct with respect to its requirement in Sec. 3.2, we must prove the following
in PVS:

` ∀h, x, l, eps • ∀qh, q, ql • limits alrm impl(h, x, l, eps, qh, q, ql)⇒
limits alrm req(h, x, l, eps, qh, q, ql)

(1)

Furthermore, we also need to ensure that the implementation is consistent
or feasible, i.e., for each input list, there exists at least one corresponding list
of outputs, such that I holds. Otherwise, the implementation trivially satisfies
any requirements. This is shown in Fig. 1 as proofs of consistency. In the case
of limits alarm, we must prove the following in PVS:

` ∀h, x, l, eps • ∃qh, q, ql • limits alrm impl(h, x, l, eps,qh, q, ql) (2)

4.2 Verifying the Equivalence of Implementations In IEC 61131-3,
block limits alarm is supplied with ST only. In theory, when both ST and FBD
implementations are supplied for the same FB (e.g., stack int), it may suffice to
verify that each of the implementations is correct with respect to the require-
ment. However, as the behaviour of FBs is intended to be deterministic in most

172

Formalizing and Verifying FBs using Tabular Expressions and PVS 11

cases, it would be worth proving that the implementations (if they are given
at the same level of abstraction) are equivalent, and generate scenarios, if any,
where they are not. This is also labelled in Fig. 1 as proofs of equivalence.

In Sec. 3.1 we discussed how to obtain, for a given FB, a predicate for its ST
description (say FB st impl) and one for its FBD description (say FB fbd impl).
Both predicates share the same input list i1, . . . , im and output list o1, . . . , on.
Consequently, to verify that the two supplied implementations are equivalent,
we must prove the following in PVS:

` ∀i1, . . . , im • ∀o1, . . . , on •
FB st impl(i1, . . . , im, o1, . . . , on) ≡ FB fbd impl(i1, . . . , im, o1, . . . , on)

(3)

However, the verification of block stack int is an exception. Its ST and FBD
implementations are at different levels of abstraction: the FBD description is
closer to the hardware level as it declares additional, auxiliary variables to in-
dicate system errors (Appendix E of IEC 61131-3) and thus cause interrupts.
Consequently, we are only able to prove a refinement (i.e., implication) relation-
ship instead (i.e., the FBD implementation implies the ST implementation).

Although IEC 61131-3 (2003) had been in use for almost 10 years, while
performing this verification on stack int, we found an error (of a missing FB in
the FBD implementation) that made the above implication unprovable [19].

5 Case Study: Issues Found in Standard IEC 61131-3

To justify the value of our approach (Secs. 3 and 4), we have formalized and
verified 23 of 29 FBs from IEC 61131-3. Our coverage so far has revealed a
number of issues that are listed in the introduction. We briefly discuss the first
three and our reactions to them. The complete discussion is available in [19].

5.1 Ambiguous Behaviour: Pulse Timer in Timing Diagrams Block
pulse is a timer defined in IEC 61131-3, whose graphical declaration is shown
on the LHS of Fig. 6. It takes two inputs (a boolean condition in and a length
pt of time period) and produces two outputs (a boolean value q and a length
et of time period). It acts as a pulse generator: as soon as the input condition
in is detected to hold, it generates a pulse to let output q remain true for a
constant pt of time units. The elapsed time that q has remained true can also be
monitored via output et. IEC 61131-3 presents a timing diagram3 as depicted on
the RHS of Fig. 6, where the horizontal time axis is labelled with time instants
ti (i ∈ 0..5), to specify (an incomplete set of) the behaviour of block pulse.
The above timing diagram suggests that when a rising edge of the input condition
in is detected at time t, another rising edge that occurs before time t+pt may not
be detected, e.g., the rising edge occurring at t3 might be missed as t3 < t2 + pt.

The use of timing diagrams to specify behaviour is limited to a small number
of use cases; subtle or critical boundary cases are likely to be missing. We for-
malize the pulse timer using tabular expressions that ensure both completeness

3 For presenting our found issues, it suffices to show just the parts of in and q.

173

12 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

+------+

|Pulse |

| |

BOOL --|in q|-- BOOL

| |

TIME --|pt et|-- BOOL

| |

+------+

+--------+ ++ ++ +--------+

in | | || || | |

--+ +-----++-++-------+ +---

t0 t1 t2 t3 t4 t5

+----+ +----+ +----+

q | | | | | |

--+ +---------+ +------+ +-------

t0 t0+pt t2 t2+pt t4 t4+pt

Fig. 6: pulse timer declaration and definition in timing diagram

and disjointness. We found that there are at least two scenarios that are not
covered by the above timing diagram supplied by IEC 61131-3. First, if a rising
edge of condition in occurred at t2 + pt, should there be a pulse generated to
let output q remain true for another pt time units? If so, there would be two
connected pulses: from t2 to t2 + pt and from t2 + pt to t2 + 2pt. Second, if the
rising edge that occurred at t3 stays high until some time tk, (t2 + pt ≤ tk ≤ t4),
should the output et be default to 0 at time t2 + pt or at time tk?

Result
Condition q

¬q−1
¬in−1 ∧ in true
in−1 ∨ ¬in false

q−1
Held For(q,pt) false
¬Held For(q,pt) true

Result
Condition pulse start time
¬q−1 ∧ q t
q−1 ∨ ¬q NC

Result
Condition et

q t − pulse start time

¬q
¬Held For ts(in,pt,pulse start time) 0

Held For ts
in

t − pulse start time ≥ pt pt
t − pulse start time < pt t − pulse start time

(in,pt,pulse start time) ¬in 0

Fig. 7: Requirement of pulse timer using tabular expressions

We use the three tables in Fig. 7 to formalize the behaviour of the pulse timer,
where outputs q and et and the internal variable pulse start time are initialized
to, respectively, false, 0, and 0. The tables have their obvious equivalents in PVS.
To make the timing behaviour precise, we define two auxiliary predicates:

Held_For(P:pred[tick],duration:posreal)(t:tick): bool =
EXISTS(t_j:tick): (t-t_j >= duration) &

(FORALL (t_n: tick | t_n >= t_j & t_n <= t): P(t_n))
Held_For_ts(P:pred[tick],duration:posreal,ts:tick)(t:tick): bool =
(t-ts >= duration) & (FORALL (t_n: tick | t_n >= ts & t_n <= t): P(t_n))

174

Formalizing and Verifying FBs using Tabular Expressions and PVS 13

Predicate Held For(P, duration) holds when the input predicate P holds for
at least duration units of time. Predicate Held For ts(P, duration, ts) is more
restricted, insisting that the starting time of duration is ts. As a result, we make
explicit assumptions to disambiguate the above two scenarios. Scenario 1 would
match the condition row (in bold) in the upper-left table for output q, where
q at the previous time tick holds (i.e., q−1) and q has already held for pt time
units, so the problematic rising edge that occurred at t2 + pt would be missed.
Due to our resolution to Scenario 1, at time t2 + pt, Scenario 2 would match the
condition row (in bold) in the lower table for output et, where q at the current
time tick does not hold (i.e., ¬q), condition in has held for more than pt time
units, so the value of et remains as pt without further increasing.

As pulse timer is not supplied with implementation, there are no correctness
and consistency proofs to be conducted. Nonetheless, obtaining a precise, com-
plete, and disjoint requirement is valuable for future concrete implementations.

5.2 Ambiguous Behaviour: Implicit Delay Unit PLC applications often
use feedback loops: outputs of a FB are connected as inputs of either another FB
or the FB itself. IEC 61131-3 specifies feedback loops through either a connecting
line or shared names of inputs and outputs. However, feedback values (or of
intermediate output values) cannot be computed instantaneously in reality. We
address this issue by introducing a delay block Z−1 and its formalization below:

Z�1
i o

Z−1(i, o)(t) =

{
o(t) = i(t− 1) if t > 0
False if t = 0

¬
˄

˅

 Z
-1

s
1

r

q
1

w
1

B
3

B
2B

1

w
3

w
2

B4

sr impl(s1, r, q1)
≡ ∃w1, w2, w3 •

neg(r, w1)
∧ conj(w1, w3, w2)
∧ disj(s1, w2, q1)
∧ Z−1(q1, w3)

Fig. 8: Block sr implementation in FBD and its formalizing predicate

There is an explicit, one-tick delay between the input and output of block
Z−1, making it suitable for denoting feedback values as output values produced
in the previous execution cycle. The types of i and o must match. For example,
block sr creates a set-dominant latch (a.k.a. flip-flop), takes as inputs a boolean
set flag s1 and a boolean reset flag r, and returns a boolean output q1. The
value of q1 is fed back as another input of block sr. Value of q1 remains true as
long as the set flag s1 is enabled, and q1 is reset to false only when both flags
are disabled. There should be a delay between the value of q1 is computed and
passed to the next execution cycle. We formalize this by adding the explicit delay
block Z−1 and conjoining predicates for the internal blocks (as shown in Fig. 8).

175

14 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

Blocks B1 (formalized by predicate neg), B2 (conj), B3 (disj), and B4 (Z−1) in
Fig. 8 denote the FB of, respectively, logical negation, conjunction, disjunction,
and delay. Arrows w1, w2, and w3 are internal connectives. Adding an explicit
delay block Z−1 to formalize feedback loops led us to discharge the correctness
and consistency theorems (Sec. 4) of the FBD implementation in Fig. 8.
5.3 Missing Assumption: Limit on Counters FBs An up-down counter
(ctud) in IEC 61131-3 is composed of an up counter (ctu) and a down counter
(ctd). The output counter value cv is incremented (using the up counter) if a
rising edge is detected on an input condition cu, or cv is decremented (using the
down counter) if a rising edge is detected on the input cd. Actions of increment
and decrement are subject to, respectively, a high limit PVmax and a low limit
PVmin. The value of cv is loaded to a preset value pv if a load flag ld is true;
and it is default to 0 if a reset condition r is enabled. Two Boolean outputs are
produced to reflect the change on cv: qu ≡ (cv > pv) and qd ≡ (cv <= 0).

As we attempted to formalize and verify the correctness of the ST implemen-
tation of block ctud supplied by IEC 61131-3, we found two missing assumptions.

Result

Condition cv
r 0

¬r

ld pv

¬ld

cu ∧ cd NC

cu∧¬cd
cv−1< PVmax cv−1+1
cv−1≥ PVmax NC

¬cu∧cd
cv−1> PVmin cv−1-1
cv−1≤ PVmin NC

¬cu ∧ ¬cd NC
assume: PVmin < pv < PVmax

Fig. 9: Tabular requirement of ctud

First, the relationship between the
high and low limits is not stated. Let
PVmin be 10 and PVmax be 1, then
the counter can only increment when
cv < 1, decrement when cv > 10
(disabled when 1 ≤ cv ≤ 10). This
contradicts with our intuition about
how low and high limits are used to
constrain the behaviour of a counter.
Consequently, we introduce a new as-
sumption4: PVmin < PVmax.

Second, the range of the preset
value pv, with respect to the limits
PVmin and PVmax, is not clear. If
cv is loaded by the value of pv, such
that pv > PVmax, the output qu can
never be true, as the counter incre-
ments when cv < PVmax. Similarly, if pv is such that pv < PVmin and pv = 1,
the output qd can never be true, as the counter decrements when cv > PVmin.
As a result, we introduce another assumption: PVmin < pv < PVmax. Our
tabular requirement for the up-down counter that incorporates the missing as-
sumption is shown in Fig. 9. Similarly, we added pv < PVmax and PVmin < pv
as assumptions for, respectively, the up and down counters.

6 Related Work

There are many works on formalizing and verifying PLC programs specified
by programming languages covered in IEC 61131-3, such as sequential func-

4 If the less intuitive interpretation is intended, we fix the assumption accordingly.

176

Formalizing and Verifying FBs using Tabular Expressions and PVS 15

tion charts (SFCs). Some approaches choose the environment of model checking:
e.g., to formalize a subset of the language of instruction lists (ILs) using timed
automata, and to verify real-time properties in Uppaal [15]; to automatically
transform SFC programs into the synchronous data flow language of Lustre,
amenable to mechanized support for checking properties [12]; to transform FBD
specifications to Uppaal formal models to verify safety applications in the in-
dustrial automation domain [23]; to provide the formal operational semantics
of ILs which is encoded into the symbolic model checker Cadence SMV, and
to verify rich behavioural properties written in linear temporal logic (LTL) [5];
and to provide the formal verification of a safety procedure in a nuclear power
plant (NPP) in which a verified Coloured Petri Net (CPN) model is derived by
reinterpretation from the FBD description [17]. There is also an integration of
SMV and Uppaal to handle, respectively, untimed and timed SFC programs [2].

Some other approaches adopt the verification environment of a theorem
prover: e.g., to check the correctness of SFC programs, automatically gener-
ated from a graphical front-end, in Coq [3]; and to formalize PLC programs
using higher-order logic and to discharge safety properties in HOL [24]. These
works are similar to ours in that PLC programs are formalized and supported
for mechanized verifications of implementations. An algebra approach for PLC
programs verification is presented in [22]. In [14], a trace function method (TFM)
based approach is presented to solve the same problem as ours.

Our work is inspired by [16] in that the overall system behaviour is defined by
taking the conjunction of those of internal components (circuits in [16] or FBs in
our case). Our resolutions to the timing issues of the pulse timer are consistent
with [11]. However, our approach is novel in that 1) we also obtain tabular
requirements to be checked against, instead of writing properties directly for the
chosen theorem prover or model checker; and 2) our formalization makes it easier
to comprehend and to reason about properties of disjointness and completeness.

7 Conclusion and Future Work

We present an approach to formalizing and verifying function blocks (FBs) using
tabular expressions and PVS. We identified issues concerning ambiguity, missing
assumptions, and erroneous implementations in the IEC 61131-3 standard of
FBs. As future work, we will apply the same approach to the remaining FBs in
IEC 61131, and possibly to IEC 61499 that fits well with distributed systems.

References

1. Bakhmach, E., O.Siora, Tokarev, V., Reshetytskyi, S., Kharchenko, V., Bezsalyi,
V.: FPGA - based technology and systems for I&C of existing and advanced reac-
tors. International Atomic Energy Agency p. 173 (2009), IAEA-CN-164-7S04

2. Bauer, N., Engell, S., Huuck, R., Lohmann, S., Lukoschus, B., Remelhe, M., Sturs-
berg, O.: Verification of PLC programs given as sequential function charts. In:
Integration of Software Specification Techniques for Applications in Engineering,
LNCS, vol. 3147, pp. 517–540. Springer Berlin Heidelberg (2004)

177

16 Linna Pang, Chen-Wei Wang, Mark Lawford, Alan Wassyng

3. Blech, J.O., Biha, S.O.: On formal reasoning on the semantics of PLC using Coq.
CoRR abs/1301.3047 (2013)

4. Camilleri, A., Gordon, M., Melham, T.: Hardware verification using higher-order
logic. Tech. Rep. UCAM-CL-TR-91, Cambridge Univ. Computer Lab (1986)

5. Canet, G., Couffin, S., Lesage, J.J., Petit, A., Schnoebelen, P.: Towards the auto-
matic verification of plc programs written in instruction list. In: IEEE International
Conference on Systems, Man and Cybernetics. pp. 2449–2454 (2000)

6. Eles, C., Lawford, M.: A tabular expression toolbox for Matlab/Simulink. In:
NASA Formal Methods. pp. 494–499 (2011)

7. Hu, X., Lawford, M., Wassyng, A.: Formal verification of the implementability of
timing requirements. In: FMICS. LNCS, vol. 5596, pp. 119–134. Springer (2009)

8. IEC: 61131-3 Ed. 2.0 en:2003: Programmable Controllers — Part 3: Programming
Languages. International Electrotechnical Commission (2003)

9. IEC: 61131-3 Ed. 3.0 en:2013: Programmable Controllers — Part 3: Programming
Languages. International Electrotechnical Commission (2013)

10. Jin, Y., Parnas, D.L.: Defining the meaning of tabular mathematical expressions.
Science of Computer Programming 75(11), 980 – 1000 (2010)

11. John, K.H., Tiegelkamp, M.: IEC 61131-3: Programming Industrial Automation
Systems Concepts and Programming Languages, Requirements for Programming
Systems, Decision-Making Aids. Springer, 2nd edn. (2010)

12. Kabra, A., Bhattacharjee, A., Karmakar, G., Wakankar, A.: Formalization of se-
quential function chart as synchronous model in Lustre. In: NCETACS. pp. 115–
120 (2012)

13. Lawford, M., McDougall, J., Froebel, P., Moum, G.: Practical application of func-
tional and relational methods for the specification and verification of safety critical
software. In: Proc. of AMAST 2000. LNCS, vol. 1816, pp. 73–88. Springer (2000)

14. Liu, Z., Parnas, D., Widemann, B.: Documenting and verifying systems assembled
from components. Frontiers of Computer Science in China 4(2), 151–161 (2010)

15. Mader, A., Wupper, H.: Timed automaton models for simple programmable logic
controllers. In: ECRTS. pp. 114–122. IEEE (1999)

16. Melham, T.: Abstraction mechanisms for hardware verification. In: VLSI Specifica-
tion, Verification and Synthesis. pp. 129–157. Kluwer Academic Publishers (1987)

17. Németh, E., Bartha, T.: Formal verification of safety functions by reinterpretation
of functional block based specifications. In: FMICS, pp. 199–214. Springer (2009)

18. Owre, S., Rushby, J.M., Shankar, N.: PVS: A Prototype Verification System. In:
CADE. LNCS, vol. 607, pp. 748–752 (1992)

19. Pang, L., Wang, C.W., Lawford, M., Wassyng, A.: Formalizing and verifying func-
tion blocks using tabular expressions and PVS. Tech. Rep. 11, McSCert (Aug 2013)

20. Parnas, D.L., Madey, J.: Functional documents for computer systems. Science of
Computer Programming 25(1), 41–61 (1995)

21. Parnas, D.L., Madey, J., Iglewski, M.: Precise documentation of well-structured
programs. IEEE Transactions on Software Engineering 20, 948–976 (1994)

22. Roussel, J.M., Faure, J.: An algebraic approach for PLC programs verification. In:
6th International Workshop on Discrete Event Systems. pp. 303–308 (2002)

23. Soliman, D., Thramboulidis, K., Frey, G.: Transformation of function block dia-
grams to Uppaal timed automata for the verification of safety applications. Annual
Reviews in Control (2012)

24. Völker, N., Krämer, B.J.: Automated verification of function block-based industrial
control systems. Science of Computer Programming 42(1), 101 – 113 (2002)

25. Wassyng, A., Janicki, R.: Tabular expressions in software engineering. In: Proceed-
ings of ICSSEA’03. vol. 4, pp. 1–46. Paris, France (2003)

178

Parametric Schedulability Analysis of Fixed
Priority Real-Time Distributed Systems

Youcheng Sun1, Romain Soulat2, Giuseppe Lipari1,2, Étienne André3, and
Laurent Fribourg2

1 Scuola Superiore Sant’Anna, Pisa, Italy
2 LSV, ENS Cachan & CNRS, France

3 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, Villetaneuse, France

Abstract. In this paper, we address the problem of parametric schedu-
lability analysis of distributed real-time systems scheduled by fixed pri-
ority. We propose two different approaches to parametric analysis. The
first one is a novel analytic technique that extends single-processor sen-
sitivity analysis to the case of distributed systems. The second approach
is based on model checking of Parametric Stopwatch Automata (PSA):
we generate a PSA model from a high-level description of the system,
and then we apply the Inverse Method to obtain all possible behaviours
of the system. Both techniques have been implemented in two software
tools, and they have been compared with classical holistic analysis on
two meaningful test cases. The results show that the analytic method
provides results similar to classical holistic analysis in a very efficient
way, whereas the PSA approach is slower but covers the entire space of
solutions.

1 Introduction and motivation

Designing and analysing distributed real-time systems is a very challenging task.
The main source of complexity arises from the large number of parameters to con-
sider: tasks priorities, computation times and deadlines, synchronisation, prece-
dence and communication constraints, etc. Finding the optimal values for the
parameters is not easy and often a small change in one parameter may com-
pletely change the behaviour of the system and even compromise its correctness.
For these reasons, designers are looking for analysis methodologies that allow
incremental design and exploration of the parameter space.

Task computation times are particularly important parameters. In modern
processor architectures, it is very difficult to precisely compute worst-case com-
putation times of tasks, thus estimations derived by previous executions are often
used in the analysis. However, estimations may turn out to be optimistic, hence
an error in the estimation of a worst-case execution time may compromise the
schedulability of the entire system.

In this paper we investigate the problem of doing parametric analysis of real-
time distributed systems scheduled by fixed priority. We consider an application

179

modelled by a set of pipelines (also called transactions in [20]), where each
pipeline is a sequence of periodic tasks to be executed in order, and all tasks
in a pipeline must complete before an end-to-end deadline. We consider that all
processors in the distributed system are connected by one or more CAN bus [13],
a network standard used in automotive applications.

The first contribution of the paper (Section 4) is to propose a new method
for doing parametric analysis of the system, using the worst-case computation
times of the tasks as parameters. The method extends the sensitivity analysis
proposed by Bini et al. [9] by considering distributed systems and non-preemptive
scheduling.

The proposed analytical method is not exact, as it sometimes overestimates
the interference of higher priority tasks and of previous tasks in the pipeline
on the response time of a task. Therefore, the second contribution of the paper
(Section 5) is to propose also an exact schedulability analysis by modelling a
distributed real-time system as a set of parametric timed automata; then we
apply a model checking methodology using the Inverse Method [7, 14].

Finally, in Section 6 we compare these two approaches with the Mast tool
[16, 17], a state-of the art tool for classical schedulability analysis. Comparison is
performed on two case studies from the research literature on which we measured
run-time and effectiveness of the three analyses. Results show that the analytical
approach can very efficiently compute the feasible space of parameters with a
good precision.

2 Related Work

Many research papers have already addressed the problem of parametric schedu-
lability analysis, especially on single processor systems. Bini and Buttazzo [9]
proposed an analysis of fixed priority single processor systems, which is used as
a basis for this paper.

Parameter sensitivity can be also be carried out by repeatedly applying clas-
sical schedulability tests, like the holistic analysis [20]. One example of this ap-
proach is used in the Mast tool [16], in which it is possible to compute the slack
(i.e. the percentage of variation) with respect to one parameter for single pro-
cessor and for distributed systems by applying binary search in that parameter
space [20].

A similar approach is followed by the SymTA/S tool [18], which is based
on the event-stream model [21]. Another interesting approach is the Modular
Performance Analysis (MPA) [24], which is based on Real-Time Calculus. In
both cases, the analysis is compositional, therefore less complex than the holistic
analysis. Nevertheless, these approaches are not fully parametric, in the sense
that it is necessary to repeat the analysis for every combination of parameter
values in order to obtain the schedulability region.

Model checking of parametric timed automata (PTA) or parametric stop-
watch automata (PSA) can be used for parametric schedulability analysis [12].
In particular, thanks to generality of the PTA and PSA modelling language, it is

180

possible to model a larger class of constraints, and perform parametric analysis
on many different variables, for example task offsets. This approach has been
recently extended to distributed real-time systems [19].

Also grounded on PTA and PSA is the Inverse Method [7], applied in par-
ticular to schedulability analysis [14]. This method is very general because it
permits to perform analysis on any system parameter. However, this generality
may be paid in terms of complexity of the analysis.

In this paper, we aim at performing fully parametric analysis of real-time
distributed systems. We first present extensions of the methods proposed in [9] to
the case of distributed real-time systems. We also present a model of a distributed
real-time systems using PSA, and compare the two approaches against classical
analysis in Mast.

3 System Model

We consider distributed real-time systems consisting of several computational
nodes, each one hosting one single processor, which are connected by one or
more shared networks. Without loss of generality, from now on we will use the
term task to denote both tasks and messages, and the term processor to denote
both processors and networks.

A distributed real-time system consists of a set of task pipelines {P1, . . . ,Pn}
to be executed on a set of processors. A pipeline is a chain of tasks Pj =
{τ j1 , . . . , τ jn} to be executed in order, and each task is allocated on one (pos-
sibly different) processor. In order to simplify the notation, in the following we
sometimes drop the pipeline superscript when there is no possibility of misinter-
pretation.

A pipeline is assigned two fixed parameters: T j is the pipeline period and
Dj
e2e is the end-to-end deadline. This means that all tasks of the pipeline are

activated together every T j units of time; and all tasks should be completed
within a time interval of Dj

e2e.
A task in the pipeline can be a piece of code to be executed on a processor

or a message to be sent over a network. More precisely, a real-time periodic task
is a tuple τi = (Ci, Ti, Di, Ri, qi, pi, Ji).

This task model contains the following fixed parameters:

– Ti is the task period. All tasks in the same pipeline have period equal to the
pipeline period T ;

– Di is the task relative deadline;
– qi is the task priority; the larger qi, the higher the priority;
– pi is the index of the processor (or network) on which the task executes.

Also, a task is characterised by the following free parameters (variables):

– Ci is the worst-case computation time (or worst-case transmission time, in
case it models a message). It is the worst-case time the task needs to com-
plete one periodic instance when executed alone on a dedicated processor

181

(or network). In this paper we want to characterise the schedulability of a
distributed system in the space of the computation times, so Ci is a free
parameter.

– Ri is the task worst-case response time, i.e. the worst case finishing time of
any task instance relative to the activation of its pipeline.

– Ji is the task worst-case activation jitter, i.e. the greatest time since its
activation that a task must wait for all preceding tasks to complete their
execution.

Every task activation is an instance (or job) of the task. We denote the kth
instance of task τi as τi,k. An instance τi,k of a task in the pipeline can start
executing only after the corresponding instance of the preceding task τi−1,k has
completed. Finally, the last task in the pipeline must complete every instance
before De2e units of time from its pipeline’s activation. For a job τi,k we define
the following notation:

– ai,k is τi,k’s arrival time (coincident with the activation time of the pipeline).
– si,k is the start time of the instance, i.e. the first time the instance executes

on the processor.
– fi,k is the job’s finishing time.
– ri,k the task release time. The first task of a pipeline is released immediately

at the time of its arrival r0,k = a0,k; successive tasks are released at the
finishing time of the preceding tasks: ri,k = fi−1,k. The following relationship
holds: ∀i, k a0,k = ai,k ≤ ri,k ≤ si,k < fi,k

– The maximum difference between arrival and release time is the worst-case
activation jitter of the task: Ji = maxk(ri,k − ai,k).

– The maximum difference between finishing time and arrival time is the worst-
case response time of the task: Ri = maxk(fi,k − ai,k).

Parameters Ri and Ji depend on the other tasks parameters and on the schedul-
ing policy according to a complex set of equations. Of course, they cannot be
considered parameters that the programmer can modify: nevertheless, for our
purposes it is useful to consider them as variables to help us write the set of
constraints that define the schedulability space (the exact role of such variables
will be detailed in Section 4.3).

A scheduling algorithm is fully preemptive if the execution of a lower priority
job can be suspended at any instant by the release of a higher priority job,
which is then executed in its place. A scheduling algorithm is non-preemptive if
a lower priority job, once it has started executing, can complete its execution
regardless of the release of higher priority jobs. In this paper, we consider fully
preemptive fixed priority scheduling for processors, and non-preemptive fixed
priority scheduling for networks.

4 Analytic Method

In this section we present a novel method for parametric analysis of distributed
system. The method extends the sensitivity analysis by Bini et al. [22, 9] to
include jitter and deadline parameters.

182

In Sections 4.1 and 4.2, we only consider the scheduling of independent peri-
odic tasks in a single processor. Then, in Section 4.3, we extend the schedulability
analysis to distributed systems.

4.1 Preemptive Tasks with Constrained Deadlines

There are many ways to test the schedulability of a set of real-time periodic
tasks scheduled by fixed priority on a single processor. In the following, we will
use the test proposed by Seto et al. [22] because it is amenable to parametric
analysis of computation times, jitters and deadlines.

The original theorem was formulated for tasks with deadlines equal to peri-
ods. For the moment, we generalise it to tasks with constrained deadlines (i.e.
Di ≤ T), while in Section 4.2 we deal with unconstrained deadlines, jitter and
non-preemptive scheduling.

Definition 1. The set of scheduling points Pi−1(t) for a task τi is the set of all
vectors corresponding to multiples of the period of any task τj with priority higher
than τi, until the maximum possible value of the deadline. It can be computed as

follows. Let ηj(t) =
⌈
t
Tj

⌉
, and let ηi−1(t) be the corresponding vector of i − 1

elements with j = 0, . . . , i− 1. Then:

Pi−1(t) = {ηi−1(t)} ∪ {ηi−1(kTh) | 0 < kTh < t, h < i} (1)

Theorem 1 ([22]). Consider a system of periodic tasks {τ1, . . . , τn} with con-
strained deadlines and zero jitter, executed on a single processor by a fixed pri-
ority preemptive scheduler. Assume all tasks are ordered in decreasing order of
priorities, with τ1 being the highest priority task.

Task τi is schedulable if and only if:

∃n ∈ Pi−1(Di)

Ci +
i−1∑

j=1

njCj ≤ nkTk ∀k = 1, . . . , i− 1

Ci +
i−1∑

j=1

njCj ≤ Ri

Ri ≤ Di

(2)

where n is a vector of i−1 integers, and Pi−1(Di) is the set of scheduling points.

Notice that, with respect to the original formulation, we have separated the case
of k = i from the rest of the inequalities and we introduced variable Ri.

The theorem allows us to only consider sets of linear inequalities, because
the non-linearity has been encoded in the variables nj . Each vector n defines
a convex region (maybe empty) with variables C1, . . . , Ci and R1, . . . , Ri. The
“exists” quantifier means that the region for each task τi is the union of convex
regions, hence it may be non-convex. Since we have to check the schedulability of

183

all tasks, we must intersect all such regions to obtain the final region of schedu-
lable parameters. The resulting system is a disjunction of sets of conjunctions of
inequalities. Geometrically, this corresponds to a non-convex polyhedron in the
space of the variables C and R of tasks.

It is worth to note that, using this formulation, we can compute the response
time of a task by simply minimising the corresponding variable Ri under the
constraints of Equation (2). As an example, consider the following task set (the
same as in [10]): τ1 = (C = 1, T = 3), τ2 = (C = 2, T = 8), τ3 = (C = 4, T = 20),
in decreasing order of priority, to be scheduled by preemptive fixed priority
scheduling on a single processor.

We consider the response time R3 as a parameter and set up the system of
inequalities according to Equation (2). After reduction of the non-useful con-
straints, we obtain 12 ≤ R3 ≤ 20. Therefore, the response time is R3 = 12,
which is the same that can be obtained by classical response time analysis.

4.2 Extensions to the Model

We now extend Seto’s test to unconstrained deadlines and variable jitters, and
non-preemptive scheduling. Non-preemptive scheduling can be modelled by con-
sidering an initial blocking time, due to the fact that a task cannot preempt
lower-priority executing tasks.

The worst case response time for a non preemptive task τi can be found in
its longest i-level active period [11]. An i-level active period Li is an interval
[a, b) such that the amount of processing that needs to be performed due to
jobs with priority higher than or equal to τi (including τi itself) is larger than
0 for all t ∈ (a, b), and equal to 0 at instants a and b. The longest Li can be
found by computing the lowest fixed point of a recursive function. Notice that,
by considering non-preemption and tasks with deadline greater than periods, the
worst-case response time may be found in any instance of the active period, not
necessarily in the first one (as with the classical model of constrained deadline
preemptive tasks).

Unfortunately, the longest busy period cannot be computed when tasks have
parametric worst-case computation times. However, under the assumption that
there is at least an idle-time in the hyperperiod (i.e. its utilisation is strictly less
than 100%) a sufficient feasibility test can be derived by computing the worst-
case response time for every instance of the task set in the hyperperiod Hn.
Therefore, we can extend our model as follows.

Theorem 2. A non preemptive task τi is schedulable if ∀h = 1, . . . , HnTi , ∃n ∈
Pi−1((h− 1)Ti +Di) such that

– Bi + (h− 1)Ci +
i−1∑
j=1

njCj ≤ nlTl − Jl ∀l = 1, . . . , i− 1;

– Bi + (h− 1)Ci +
i−1∑
j=1

njCj ≤ (h− 1)Ti +Ri − Ci − Ji;
– Ri ≤ Di and Bi ≤ Cj − 1 for all j > i.

184

Proof. See [23].

Term Bi is an additional internal variable used to model the blocking time that
a task suffers from lower priority tasks. It is possible to avoid the introduction
of this additional variable by substituting it in the inequalities with a simple
Fourier-Motzkin elimination.

Notice that the introduction of unconstrained deadlines adds a great amount
of complexity to the problem. In particular, the number of non-convex regions to
intersect is now O(

∑n
i=1

Hn
Ti

), which is dominated by O(nHn). So, the proposed
problem representation is pseudo-polynomial in the size of the hyperperiod. How-
ever, in real applications, we expect the periods to have “nice” relationships: for
example, in many cases engineers choose periods that are multiples of each oth-
ers. Therefore, we expect the set of inequalities to have manageable size for
realistic problems.

4.3 Distributed Systems

Until now, we have considered the parametric analysis of independent tasks on
single processor systems, with computation times, response times, blocking times
and jitters as free variables.

One key observation is that a precedence constraint between two consecutive
tasks τi and τi+1 in the same pipeline can be expressed as Ri ≤ Ji+1. This
relationship derives directly from the definition of response time and jitter in
Section 3. Using this elementary property, we can now build the parametric
space for a distributed system as follows.

1. For each processor and network, we build the constraint system of Theo-
rem 2. Notice that the set of constraints for the individual single processor
systems are independent of each other (because they are constraints on dif-
ferent tasks).

2. For each pipeline Pa:
– two successive tasks τai and τai+1 must fulfil the constraint Rai ≤ Jai+1;
– for the initial task we impose Ja1 = 0.

Such pipeline constraints must intersect the combined system to produce
the final system of constraints. However, simply adding the above precedence
constraints can lead to pessimistic solutions. In fact, if two tasks from the same
pipeline are assigned to the same processor, the interference they may cause on
each other and on the other tasks may be limited.

Suppose τai and τaj are allocated to the same processor and qai > qaj . Then,
τai can at most interfere with the execution of a job from τaj a number of times

equal to ξ =
⌈
max{0,Dae2e−Ta}

Ta

⌉
. So, we impose that ∀n ∈ Pj−1, ni ≤ ξ.

The analytic method proposed in this section has been implemented in a
software tool, called RTScan, which is based on the PPL (Parma Polyhedra
Library) [8], a library specifically designed and optimised to represent and op-
erate on polyhedra. The library efficiently operates on rational numbers with

185

arbitrary precision: therefore, in this work we make the assumption that all vari-
ables (computations times, response times and jitter) are defined in the domain
of rationals (rather than reals).

We observed that the complexity of the methodology for generating the pa-
rameter space strongly depends on the number of free parameters considered in
the analysis. Therefore, as a preliminary step, the tool requires the user to se-
lect a subset of the computation times on which the analysis will be performed,
whereas the other parameters will be assigned fixed values. During construction
of the polyhedron we have to keep Ri, Ji and Bi for each task as variables.
Therefore, the number of variables to be managed is nV = 4 ·N + F , where N
is the number of tasks and F is the number of variables to analyse. At the end,
we can eliminate the Ri, Ji and Bi variables, hence the final space consists of
F dimensions. An evaluation of this tool and of the run-time complexity of the
analysis will be presented in Section 6.

The analytic method described so far is not exact. In fact, when dealing with
pipelines in a distributed system we may sometimes overestimate the interference
of higher priority-tasks on lower priority ones. For this reason, we now present
an exact parametric analysis based on PSA and model checking.

5 The Inverse Method Approach

5.1 Parametric Timed Automata with Stopwatches

Timed automata are finite-state automata augmented with clocks, i.e., real-
valued variables increasing uniformly, that are compared within guards and in-
variants with timing delays [3]. Parametric timed automata (PTA) [4] extend
timed automata with parameters, i.e., unknown constants, that can be used in
guards and invariants. We will use here an extension of PTA with stopwatches [2],
where clocks can be stopped in some control states of the automaton.

Given a set X of clocks and a set U of parameters, a constraint C over X
and U is a conjunction of linear inequalities on X and U1. Given a parameter
valuation (or point) π, we write π |= C when the constraint where all parameters
within C have been replaced by their value as in π is satisfied by a non-empty
set of clock valuations.

Definition 2. A parametric timed automaton with stopwatches (PSA) A is
(Σ,Q, q0, X, U,K, I, slope,→) with Σ a finite set of actions, Q a finite set of
locations, q0 ∈ Q the initial location, X a set of h clocks, U a set of parameters,
K a constraint over U , I the invariant assigning to every q ∈ Q a constraint
over X and U , slope : Q→ {0, 1}h assigns a constant slope to every location, and
→ a step relation consisting of elements (q, g, a, ρ, q′), where q, q′ ∈ Q, a ∈ Σ,
ρ ⊆ X is the set of clocks to be reset, and the guard g is a constraint over X
and U .
1 Note that this is a more general form than the strict original definition of PTA [4];

since most problems for PTA are undecidable anyway, this has no practical incidence,
and increases the expressiveness of the formalism.

186

The semantics of a PSA A is defined in terms of states, i.e., pairs (q, C)
where q ∈ Q and C is a constraint over X and U . Given a point π, we say
that a state (q, C) is π-compatible if π |= C. Runs are alternating sequences of
states and actions, and traces are time-abstract runs, i.e., alternating sequences
of locations and actions. The trace set of A corresponds to the traces associated
with all the runs of A. Given A and π, we denote by A[π] the (non-parametric)
timed stopwatch automaton where each occurrence of a parameter has been
replaced by its constant value as in π. Details can be found in, e.g., [7].

The Inverse Method for PSA [7] exploits the knowledge of a reference point of
timing values for which the good behaviour of the system is known. The method
synthesises automatically a dense space of points around the reference point, for
which the discrete behaviour of the system, that is the set of all the admissible
sequences of interleaving events, is guaranteed to be the same.

The Inverse Method IM proceeds by exploring iteratively longer runs from
the initial state. When a π-incompatible state is met (that is a state (q, C) such
that π 6|= C), a π-incompatible inequality J is selected within the projection
of C onto U . This inequality is then negated, and the analysis restarts with a
model further constrained by ¬J . When a fixpoint is reached, that is when no
π-incompatible state is found and all states have their successors within the set
of reachable states, the intersection of all the constraints onto the parameters is
returned.

Although the principle of IM shares similarities with sensitivity analysis, IM
proceeds by iterative state space exploration. Furthermore, its result comes under
the form of a fully parametric constraint, in contrast to sensitivity analysis. By
repeatedly applying the method, we are able to decompose the parameter space
into a covering set of “tiles”, which ensure a uniform behaviour of the system:
it is sufficient to test only one point of the tile in order to know whether or not
the system behaves correctly on the whole tile. This is known as the behavioural
cartography [5].

5.2 Modelling the System Using Parametric Stopwatch Automata

Timed Automata with Stopwatches have been used for modelling scheduling
problems in the past. Our model technique is similar to [2, 1], except that we
model pipelines of tasks, and that we use PSA for obtaining the space of feasible
computation times. In the current implementation, we only model pipelines with
end-to-end deadlines no larger than their periods. This allows us to simplify the
model and reduce the complexity of the analysis. The extension to deadlines
larger than the period is discussed at the end of the section.

We illustrate our model with the help of an example of two pipelines P1,P2

with P1 = {τ1, τ2}, P2 = {τ3, τ4}, p(τ1) = p(τ4) = p1, p(τ2) = p(τ3) = p2,
p1 being a preemptive processor and p2 being non-preemptive. We have that
q1 > q4 and q3 > q2.

Figure 1 shows the PSA model of a pipeline. A pipeline is a sequence of tasks
that are to be executed in order: when a task completes its instance, it instantly
releases the next task in the pipeline. Since we assume constrained deadlines,

187

once every task in the pipeline has completed, the pipeline waits for the next
period to start. This PSA contains one local clock xP1 , one parameter T1 (the
pipeline’s period), and synchronises on 5 actions: “τ1 release”, “τ1 completed”,
“τ2 release”, “τ2 completed”, and “P1 restart”. The order of these events imposes
that task τ1 must be entirely executed before task τ2. The initialisation of the
pipeline’s local clock xP1 and the invariant xP1 ≤ T1 ensure that the pipeline’s
execution terminates within its period T1. The guard xP1 == T1 ensures that
the pipeline restarts after exactly T1 units of time.

τ1 waiting
urgent

τ1 released

τ2 waiting
urgent

τ2 released
P1 complete
xP1 ≤ T1

τ1 release

τ1 completed

τ2 release

τ2 completed

xP1 == T1

P1 restart
xP1 := 0

Fig. 1. PSA modelling a pipeline P1 with two tasks τ1, τ2

Figure 2 shows the model of a preemptive processor with 2 tasks τ1 and τ4,
where task τ1 has higher priority over task τ4. The processor starts by being
idle, waiting for a task release. As soon as a request has been received (e.g.
action “τ4 release”), it moves to one of the states where the corresponding task
is running (“τ4 running”). If it receives another release request (“τ1 release”),
it moves to the state corresponding to the higher priority task running (“τ1
release, τ4 released”). The fact that τ1 does not execute anymore is modelled by
the blocking of the clock xτ4 corresponding to task τ4. Moreover, while a task
executes, the scheduler automaton checks if the corresponding pipeline misses
its deadline (e.g. guard xP1 > D1

e2e, where D1
e2e is τ1’s deadline). In the case of a

deadline miss, the processor moves to a special failure state (“deadline missed”)
and stops any further computation.

The model of a non-preemptive processor is very similar to the model of
preemptive processor: the central state in Figure 2 which accounts for the fact
that τ4 is stopped when τ1 is released, in the non-preemptive case must not stop
τ4, but simply remember that τ1 has been released, so that we can move to the
top state when τ4 completes its instance.

We use the Imitator software tool [6] implementing the behavioural car-
tography, to perform the analysis of the PSA. The tool takes as input a textual
description of the PSA and an interval of values for each parameter, which can
be seen as a hypercube in |U | dimensions, with |U | the number of parameters.
Then, it explores the hypercube of values using IM , and it outputs a set of tiles.

For each tile, Imitator derives whether the corresponding system behaviour
is valid (i.e. no deadline miss is present), which corresponds to a good tile,
or invalid (at least one deadline miss has been found), which corresponds to
a bad tile. Every behaviour can be regarded as a set of traces of the system.

188

Idle
xτ1 ,xτ4 stopped

τ1 running
xτ4

stopped

τ4 running
xτ1

stopped

τ1 running
τ4 released
xτ4

stopped
Deadline missed

τ1 release

τ4 release

xτ1
== C1

τ1 completed
xτ1 := 0

τ4 release

xP1 > D1
e2e

Deadline miss

xτ4 == C4
τ4 completed
xτ4

:= 0

τ1 release

xP2 > D2
e2e

Deadline miss

xτ1 == C1
τ1 completed
xτ1

:= 0

xP1 > D1
e2e

or xP2 > D2
e2e

Deadline miss

Fig. 2. PSA modelling a preemptive processor with two tasks τ1, τ4

Although deadline misses are timed behaviours, they are reduced to (untimed)
traces thanks to the “deadline miss” location of the processor PSA. All points
inside one particular tile are values of the parameters that generate equivalent
behaviours (they correspond to the same trace set).

The result of the behavioural cartography is a set of tiles that covers “al-
most”2 the entire hypercube. The region of space we are looking for is the union
of all the good tiles.

The proposed model can be extended to deal with deadlines greater than
periods by changing the automaton in Figure 1. In particular, we must take into
account that each task can have up to

⌈
De2e
T

⌉
pending instances that have not

completed yet. However, the number of locations increases with
⌈
De2e
T

⌉
and thus

the complexity of the analysis.

6 Evaluation

In this section we evaluate the effectiveness and the running time of the two
proposed tools on two case studies. As a baseline comparison, we choose to also
run the same kind of analysis on the same case studies using Mast.

In order to simplify the visualisation of the results, for each test case we
present the 2D region generated for two parameters only. However, all three
methods are general and can be applied to any number of parameters. In Sec-
tion 6.3 we will present the execution times of the three tools on the test-cases.

Mast [15] is a software tool implemented and maintained by the CTR group
at the Universidad de Cantabria that allows to perform schedulability analysis
for distributed real-time systems. It provides the user with several different kinds

2 Technically, a part might be non-covered in some cases at the border between the
good and the bad subspace; this part has a width of at most ε, where ε is an input
of the tool; of course, the smaller ε, the more costly the analysis (see [5, 7]).

189

Table 1. Test case 1; all numbers in
“ticks”

Pipeline/Task T De2e Tasks C q p

τ1 20 20 – free 9 1

P 1 150 150

τ11 free 3 1
τ12 10 9 2
τ13 8 5 3
τ14 15 2 2
τ15 25 2 1

τ2 30 30 – 6 9 3

τ3 200 200 – 40 2 3

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
1

C
1

1

Fig. 3. TC1: Schedulability regions pro-
duced by RTScan (hatched), Mast (red,
below), and Imitator (green, above)

of analysis. For our purposes, we have selected the “Offset Based analysis” [20],
an improvement over classical holistic analysis that takes into account some of
the relationships between tasks belonging to the same pipeline.

6.1 Test Case 1

The first test case (TC1) has been adapted from [20] (we reduced the computa-
tion times of some tasks to position the system in a more interesting schedula-
bility region). It consists of three simple periodic tasks and one pipeline, running
on two processors (p1 and p3), connected by a CAN bus (p2). The parameters
are listed in Table 1. The pipeline models a remote procedure call from processor
1 to processor 3. All tasks have deadlines equal to periods, and also the pipeline
has end-to-end deadline equal to its period. Only two messages are sent on the
network, and according to our optimisation rule for building parametric space, if
the pipeline is schedulable, they cannot interfere with each other. We performed
parametric schedulability analysis with respect to C1 and C1

1 .

The resulting regions of schedulability from the three tools are reported in
Figure 3. In this particular test, RTScan dominates Mast. After some debug-
ging, we discovered that the analysis algorithm currently implemented in Mast
does not consider the fact that the two messages τ12 and τ14 cannot interfere with
each other, and instead considers a non-null blocking time on the network.

As expected, the region computed by Imitator dominates the other two
tools. This means that there is much space for improvement in the analysis even
for such simple systems.3

3 By zooming in the figure, it looks like in some very small areas, the region produced
by RTScan goes over the region produced by Imitator. However, remember that
both tools only deal with integer numbers; that small region does not contain any
integer point.

190

Table 2. Test case 2: periods and dead-
lines are in milliseconds, computation
times in micro-seconds.

Pipeline T De2e Tasks C q p

P 1 200
(30)

200

τ11 4,546 10 1
τ12 445 10 2
τ13 9,091 10 4
τ14 445 9 2
τ15 free 9 1

P 2 3,000 1,000

τ21 free 9 4
τ22 889 8 2
τ23 44,248 10 3
τ24 889 7 2
τ25 22,728 8 1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

 0

 50000

 100000

 150000

 200000

 250000

 0 200000 400000 600000 800000 1e+06

C
1 5

C
2

1

Fig. 4. Schedulability regions for test
case 2a, produced by RTScan (hatched),
Mast (red), and Imitator (green)

6.2 Test Case 2

The second test case is taken from [24]. It consists of two pipelines on 3 pro-
cessors (with id 1, 3 and 4) and one network (with id 2). We actually consider
two versions of this test case: in the first version (a) pipeline P 1 is periodic with
period 200ms and end-to-end deadline equal to the period. In the second ver-
sion (b), the period of the first pipeline is reduced to 30ms (as in the original
specification in [24]). The full set of parameters is reported in Table 2, where
all values are expressed in microseconds. We perform parametric analysis on C1

5

and C2
1 .

For version (a) we run all tools and we report the regions of schedulability in
Figure 4. Once again Imitator dominates the other two. Also, Mast dominated
RTScan. The reason is due to the offset-based analysis methodology used in
Mast, which reduces the interference on one task from other tasks belonging to
the same pipeline.

For version (b) we run only RTScan and Mast, because in the current
version we only model constrained deadline systems with Imitator. The results
for version (b) are reported in Figure 5. In this case, Mast dominates RTScan.
Again, this is due to the fact that Mast implements the offset-based analysis.

6.3 Execution Times

Before looking at the execution times of the three tools in the three different
test cases, it is worth to discuss some details about their implementation.

Imitator produces a disjunction of convex regions. However, these regions
are typically small and disjoints. Moreover, to produce a region, Imitator needs
to start from a candidate point on which to call IM , and then move to close-by
regions. One key factor here is how this search is performed. Currently, Imita-
tor searches for a candidate point in the neighbourhood of the current region.
This is a very general strategy that works for any kind of PSA. However, the

191

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+05 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5

C
1 5

C
2

1

Fig. 5. Schedulability regions for test case
2b, produced by RTScan (grey, below)
and Mast (red, above)

Table 3. Execution times of the tools

Test Case RTScan Mast Imitator

1 0.27s 7 s 19min42
2a 0.47s 40min13 2h08
2b 1min11 33min19 –

particular structure of schedulability problems would probably require an ad-hoc
exploration algorithm.

Mast can perform sensitivity analysis on one parameter (called slack compu-
tation in the tool), using binary search on a possible interval of values. Therefore,
to run the experiments, we performed a cycle on all values of one parameter (with
a predefined step) and we asked Mast to compute the interval of feasible values
for the other parameter.

All experiments have been performed on an Intel Core I7 quad-core processor
(800 MHz per processor) with 8 GiB of RAM. The execution times of the tools
in the three test cases are reported in Table 3. RTScan is the fastest method
in all test-cases. In test case 2b, the execution time of RTScan is much larger
than the one obtained from test case 2a. This is due to the fact that in test case
2b one pipeline has end-to-end deadline greater than the period, and therefore
RTScan needs to compute many more inequalities (for all points in the hyper-
period). Finally, Imitator is the slowest of the three and does not scale well
with the size of the problem. We observed that the tool spends a few seconds
for computing the schedulability region around each point. However, the regions
are quite small, and there are many of them: for example, in test case 2a Im-
itator analysed 257 regions. Also, the tool spends a large amount of time in
searching for neighbourhood points. We believe that some improvement in the
computation time of Imitator can be achieved by coming up with a different
exploration strategy more specialised to our problem.

We also evaluated the scalability of RTScan with respect to the number of
parameters. To do this, we run the tool on test case 2b with a varying number of
parameters. The computation time went from 1min11 for F = 2 parameters, up
to 20min15 for the case of F = 6. With F = 6, the memory used by our program
took a peak utilisation of 7.2 GiB, close to the memory limit of our PC. However,
we believe that 6 parameters are sufficient for many practical engineering uses.

192

7 Conclusions and Future Work

In this paper we presented two different approaches to perform parametric anal-
ysis of distributed real-time systems: one based on analytic methods of classic
schedulability analysis; the other one based on model checking of PSA. We com-
pared the two approached with classical holistic analysis.

The results are promising, and we plan to extend this work along different
directions. Regarding the analytic method, we want to enhance the analysis
including static and dynamic offsets, following the approach of [20]. Also, we
want to test the scalability of our approach on industrial test-cases.

As of Imitator, we plan to improve the algorithm to explore the param-
eters space: a promising idea is to use the analytic method to find an initial
approximation of the feasible space, and then extend the border of the space
using PSA.

Acknowledgements

We would like to express our gratitude to Michael González Harbour and Juan
M. Rivas, from the Universidad de Cantabria, for their support to installing and
using the Mast tool.

The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement
No. 246556.

References

1. Y. Abdeddäım, E. Asarin, and O. Maler. Scheduling with timed automata. Theo-
retical Computer Science, 354(2):272–300, 2006.

2. Y. Adbeddäım and O. Maler. Preemptive job-shop scheduling using stopwatch
automata. In TACAS, volume 2280 of Lecture Notes in Computer Science, pages
113–126. Springer-Verlag, 2002.

3. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

4. R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In
STOC, pages 592–601. ACM, 1993.

5. É. André and L. Fribourg. Behavioral cartography of timed automata. In RP,
volume 6227 of Lecture Notes in Computer Science, pages 76–90. Springer, 2010.

6. É. André, L. Fribourg, U. Kühne, and R. Soulat. IMITATOR 2.5: A tool for
analyzing robustness in scheduling problems. In FM, volume 7436 of Lecture Notes
in Computer Science, pages 33–36. Springer, 2012.

7. É. André and R. Soulat. The Inverse Method. FOCUS Series in Computer En-
gineering and Information Technology. ISTE Ltd and John Wiley & Sons Inc.,
2013.

8. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

193

9. E. Bini. The Design Domain of Real-Time Systems. PhD thesis, Scuola Superiore
Sant’Anna, 2004.

10. E. Bini and G. C. Buttazzo. Schedulability analysis of periodic fixed priority
systems. IEEE Transactions on Computers, 53(11):1462–1473, 2004.

11. R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh. Worst-case response time anal-
ysis of real-time tasks under fixed-priority scheduling with deferred preemption
revisited. In ECRTS, pages 269–279. IEEE Computer Society, 2007.

12. A. Cimatti, L. Palopoli, and Y. Ramadian. Symbolic computation of schedulability
regions using parametric timed automata. In RTSS, pages 80–89, 2008.

13. R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. Controller area network
(can) schedulability analysis: Refuted, revisited and revised. Real-Time Systems,
35:239–272, 2007.

14. L. Fribourg, D. Lesens, P. Moro, and R. Soulat. Robustness analysis for scheduling
problems using the inverse method. In TIME, pages 73–80. IEEE Computer Society
Press, 2012.

15. M. Gonzalez Harbour, J. J. Gutierrez Garcia, J. C. Palencia Gutierrez, and J. M.
Drake Moyano. Mast: Modeling and analysis suite for real time applications. In
ECRTS, pages 125–134, 2001.

16. M. González Harbour, J. Gutiérrez, J. Palencia, and J. Drake. MAST: Modeling
and analysis suite for real-time applications. In ECRTS, 2001.

17. Grupo de Computadores y Tiempo Real, Universidad de Cantabria. MAST: Mod-
eling and analysis suite for real-time applications. http://mast.unican.es/.

18. R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System level
performance analysis – the SymTA/S approach. Computers and Digital Tech-
niques, IEE Proceedings -, 152(2):148 – 166, 2005.

19. T. T. H. Le, L. Palopoli, R. Passerone, and Y. Ramadian. Timed-automata based
schedulability analysis for distributed firm real-time systems: a case study. Inter-
national Journal on Software Tools for Technology Transfer, 15(3):211–228, 2013.

20. J. C. Palencia and M. Gonzalez Harbour. Schedulability analysis for tasks with
static and dynamic offsets. In RTSS, pages 26–37, 1998.

21. K. Richter and R. Ernst. Event model interfaces for heterogeneous system analysis.
In DATE, pages 506–513. IEEE Computer Society, 2002.

22. D. Seto, D. P. Lehoczky, and L. Sha. Task period selection and schedulability in
real-time systems. In RTSS, 1998.

23. Y. Sun, R. Soulat, G. Lipari, É. André, and L. Fribourg. Parametric schedulability
analysis of fixed priority real-time distributed systems. Research Report LSV-13-
03, Laboratoire Spécification et Vérification, ENS Cachan, France, 2013.

24. E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System architecture evalua-
tion using modular performance analysis: a case study. International Journal on
Software Tools for Technology Transfer, 8(6):649–667, 2006.

194

Model Based Testing from
Controlled Natural Language Requirements

Gustavo Carvalho1, Flávia Barros1,
Florian Lapschies2, Uwe Schulze2, and Jan Peleska2

1 Universidade Federal de Pernambuco - Centro de Informática, 50740-560, Brazil
{ghpc,fab}@cin.ufpe.br

2 Universität Bremen, Dep. of Mathematics and Computer Science, 28209, Germany
{florian,uschulze,jp}@informatik.uni-bremen.de

Abstract. Model Based Testing (MBT) techniques usually take as in-
put models that are not available in the very beginning of a development.
Therefore, its use is postponed. In this work we present an approach to
MBT that takes as input requirements described in a Controlled Natural
Language. Initially, the requirements are syntactically analyzed accord-
ing to a domain specific language for describing system requirements,
and their informal semantics is depicted based on the Case Grammar
theory. Then, the requirements semantics is automatically represented
as a Transition Relation, which provides formal basis for MBT, and test
cases are generated with the support of a solver. Our approach was evalu-
ated considering four examples from different domains. Within seconds,
our approach generated 94% of the test vectors manually written by
specialists. Moreover, considering a mutant-based strength analysis, our
approach yielded a mutation score between 54% and 98%.

Keywords: Natural Language, Case Grammar, Solver, Test Case

1 Introduction

During the last fifty years, we have witnessed a significant increase of embedded
HW-SW components in critical systems. Clearly, this trend goes along with
increased software size and complexity, and strongly impacts critical systems’
safety and reliability. Currently, many researchers are focusing on how to achieve
the safety and reliability levels required for these systems. Some approaches
to deal with such a problem rely on Model Based Testing (MBT) techniques.
However, these techniques usually take as input models (e. g., state diagrams)
that are usually not yet available in the very beginning of the system development
project. In the initial phases, only high-level and textual requirement descriptions
are usually available. Therefore, the use of MBT is postponed.

To enable early MBT, we propose NAT2TESTIMR—an approach to gen-
erate test cases from requirements described in Controlled Natural Language
(CNL) based on the RT-Tester3 Internal Model Representation (IMR) [12]. The

3 http://www.verified.de

195

2 G. Carvalho, F. Barros, F. Lapschies, U. Schulze, J. Peleska

requirements can describe temporal properties besides functional behaviour. We
opt for receiving textual requirements as input instead of a graphical notation
because the former is usually available first and in some industries it is required
to have textual descriptions for certification purposes.

Initially, our approach parses the textual system requirements to evaluate
their conformance with the CNL structure. Our CNL (the SysReq-CNL) is a
non-ambiguous and precise subset of the English language. After parsing, our
approach provides a semantic interpretation for the requirements, using verb
case frames as semantic representation [1]. This idea was first developed by the
authors in a previous work [5], and this paper extends our original ideas. From
the case frames, the requirements’ semantics are mapped into an internal model
representation whose formal semantics is given by means of a transition relation.
Based on this model, our approach generates test vectors with the support of
the RT-Tester and its SMT solver. This whole process is fully automated by
supporting tools. The tests generated by NAT2TESTIMR provide means for
early testing/simulation of models at design level.

To evaluate our proposal, we applied it to four examples from different do-
mains: (i) a Vending Machine (a toy example); (ii) a control system for Safety
Injection in a Nuclear Power Plant (publicly available [8]); (iii) one example
provided by Embraer4 (a Brazilian aircraft manufacturer); and (iv) part of the
Turn Indicator System [11] of today’s Mercedes vehicles (publicly available5).

The NAT2TESTIMR approach was evaluated from three perspective: (i) per-
formance; (ii) automatically generated versus manually written test vectors (by
Embraer); and (iii) mutant-based strength analysis. Within seconds, our ap-
proach generated 94% of the test vectors manually written by Embraer spe-
cialists. Moreover, considering a mutant-based strength analysis, our approach
yielded a mutation score between 54% and 98%.

Therefore, the main contributions of this work are: (1) an MBT approach for
generating tests from textual requirements, (2) a formal representation of case
frames by means of a transition relation, and (3) empirical evaluations of our
approach considering four examples from different domains.

Section 2 describes how requirements are parsed and how verb case frames
are inferred. Section 3 explains how case frames are represented by means of
a transition relation, and how tests can be generated. Section 4 presents the
tool support for our approach. Section 5 analyzes empirical evidence. Section 6
addresses related work, and Section 7 presents conclusions and future work.

2 Syntactic / Semantic Analyses

Here, we use Natural Language Processing (NLP) for parsing each system re-
quirement according to our CNL (SysReq-CNL). For each valid requirement,
the parser returns the corresponding syntax tree (ST). As described later, case
frames give semantic meaning for each obtained ST.

4 http://www.embraer.com/en-us/pages/home.aspx
5 http://www.mbt-benchmarks.org

196

Model Based Testing from Controlled Natural Language Requirements 3

2.1 The SysReq-CNL

A Controlled Natural Language is a subset of an existing natural language that
uses a restricted set of grammar rules and a predefined lexicon containing the
application domain vocabulary. In general, CNLs are specially designed to avoid
textual complexity and ambiguity. The SysReq-CNL was created for editing
unambiguous requirements for critical systems. It is defined by a CFG, and a
lexicon containing the application domain vocabulary.

The lexicon entries are classified into lexical classes (also known as Parts
Of Speech—POS [1]). In this work, we consider the following commonly used
lexical classes: determiners (DET), nouns (NSING for singular and NPLUR
for plural), adjectives (ADJ), adverbs (ADV), verb inflections (for example,
VBASE—base form, VPRE3RD—for 3rd person in present form), conjunctions
(CNJ), prepositions (PREP) and numbers (NUMBER).

The SysReq-CNL grammar (see Figure 1) conveys the syntactic rules used
by the CNL-Parser to generate the requirements corresponding syntax trees.
Words in uppercase denote terminal symbols, and a “;” delimits the end of each
production. Here, terminal symbols correspond to lexical classes.

Requirement→ ConditionalClause COMMA ActionClause;

ConditionalClause→ CONJ AndCondition;

AndCondition→ AndCondition COMMA AND OrCondition | OrCondition;

OrCondition→ OrCondition OR Condition| Condition;

Condition→ NounPhrase V erbPhraseCondition;

ActionClause→ NounPhrase V erbPhraseAction;

NounPhrase→ DET? ADJ ∗ Noun+;

Noun→ NSING | NPLUR;

V erbPhraseCondition→ V erbCondition NOT?ComparativeTerm? V erbComplement;

V erbCondition→ (VPRE3RD | VTOBE PRE3 | VTOBE PRE |
VTOBE PAST3 | VTOBE PAST);

ComparativeTerm→ (COMP (OR NOT? COMP)?);

V erbPhraseAction→ SHALL (V erbActionV erbComplement | COLON V erbAction
V erbComplement (COMMA V erbActionV erbComplement)+);

V erbAction→ VBASE;

V erbComplement→ V ariableState? PrepositionalPhrase∗;
V ariableState→ (NounPhrase | ADV | ADJ | NUMBER);

PrepositionalPhrase→ PREP V ariableState;

Fig. 1. Grammar for System Requirements.

The grammar start symbol is Requirement, which is composed by a Con-
ditionalClause and an ActionClause. Thus, the requirements have the form of
action statements guarded by conditions. A ConditionalClause begins with a
conjunction, and then its structure is similar to a Conjunctive Normal Form
(CNF). The conjunctions are delimited by a COMMA and the AND keyword,
whereas the disjunctions are delimited by the OR keyword. An ActionClause

197

4 G. Carvalho, F. Barros, F. Lapschies, U. Schulze, J. Peleska

begins with a NounPhrase (nouns eventually preceded by a determiner and ad-
jectives) followed by a VerbPhraseAction, which describes action statements.

This concise grammar is able to represent requirements written using several
different sentence formations, and it is not restricted to one specific application
domain. We have successfully applied the SysReq-CNL in the different domains
considered in this work. The requirement REQ-007 is a typical requirement from
the Turn Indicator System adhering to the SysReq-CNL.

REQ-007: When the voltage is greater than 80, and the flashing timer is greater
than or equal to 220, and the left indication lights are off, and the right indication
lights are off, and the flashing mode is left flashing or the flashing mode is left tip
flashing, the lights controller component shall: assign ‘on’ to the left indication
lights, assign ‘off’ to the right indication lights, reset the flashing timer.

In the Embraer context, the requirements originally written by their Re-
quirements Team are similar to the format imposed by the SysReq-CNL. In
what follows, we present a typical requirement written by Embraer Team, and
the corresponding form, rewritten to adhere to the SysReq-CNL.

Original: The Priority Logic Function shall assign value 0 (zero) to Command
In-Control output when: left Priority Button is not pressed AND right Priority
Button is not pressed AND left Command is on neutral position AND right
Command is on neutral position.
Rewritten: When the left priority button is not pressed, and the right priority
button is not pressed, and the left command is on neutral position, and the right
command is on neutral position, the Priority Logic Function shall assign 0 to
the Command-In-Control output.

2.2 The Case Frames Notation

We follow the Case Grammar linguistic theory [1] to represent Natural Language
(NL) semantic meaning. In this theory, a sentence is not analysed in terms of
the syntactic categories or grammatical functions, but in terms of the semantic
(thematic) roles played by each word/group of words in the sentence.

The obtained semantic representation is then mapped into an internal model
whose formal semantics is given by means of a transition relation. The thematic
roles semantic representation frees the process of generating the internal model
from depending upon the SysReq-CNL syntactic rules. Thus, if the CNL evolves
to capture new syntactic structures without changing the underlying semantics,
the process of generating the internal model will not change.

Within the Case Grammar theory, each verb is associated to specific thematic
roles (TR), which form the verb’s Case Frame (CF). Thus, a CF is a structure
with slots (representing thematic roles) to be filled in by sentence elements. Roles
may be obligatory or optional in a CF. In our work, each verb in the Lexicon
is associated to a CF. We consider 9 TRs6: (1) Action (ACT), the action that

6 The adopted nomenclature was inspired by [1].

198

Model Based Testing from Controlled Natural Language Requirements 5

shall be performed if the conditions are satisfied. (2) Agent (AGT), entity who
performs the action. (3) Patient (PAT), entity who is affected by the action.
(4) To Value (TOV), the Patient value after action completion. (5) Condition
Action (CAC), the action that concerns each Condition Patient. (6) Condition
Patient (CPT), the element associated with each condition. (7) Condition From
Value (CFV), each Condition Patient previous value. (8) Condition To Value
(CTV), each Condition Patient value that satisfies the condition. (9) Condition
Modifier (CMD), some modifier related to the condition, e. g., a negation. The
TR Condition Modifier was defined by us, whereas the others are defined in the
related literature. Table 1 shows CFs corresponding to REQ-007.

The verb case frames are inferred from the syntax trees returned by the
parser. This is done by visiting the syntax trees searching for particular pat-
terns. For instance, the agent (AGT) always corresponds to the terminals of
the NounPhrase that is a child of an ActionClause. Sometimes the ST struc-
ture is insufficient, and the patterns are dependent on the verb being used. For
instance, consider the patient thematic role (PAT), and the verbs change and
assign. For the verb change, we might have the following sentence structure:
“. . . shall change something from old value to new value”. However, when the
verb assign is used, we have: “. . . shall assign new value to something”. In both
cases, the patient is something, but depending on the verb being used, this el-
ement appears in different parts of the sentence and of the corresponding ST.
Thus, in this case, we need specific rules governed by each verb.

Currently, we consider the verbs: to add, to assign, to be, to become, to change,
to reset, and to subtract. It is worth mentioning that they are sufficient to write
all requirements (51 in total) of the examples considered in this work. These
patterns were initially defined for the Embraer example, and then they were
applied without changes to the other three examples.

3 Generation of Test Vectors

In our approach, system behavior is internally modeled by state machines, cap-
tured in the RT-Tester Internal Model Representation (IMR). For generating test
cases with associated test data, the concurrent state machine semantics is rep-
resented by means of a transition relation Φ associating pre-states of locations,
variables and current time with post-states. Below we describe the IMR, how
state machines are inferred from the case frames, and how we use the transition
relation for generating concrete test data.

3.1 Internal Model Representation

The system model is arranged in hierarchical components c ∈ C, so that a partial
function pC : C 6→ C mapping each component but the root cr to its parent is
defined [12]. Each component may declare variables, and hierarchic scope rules
are applied in name resolution. Interfaces between Test Environment (TE) and
System Under Test (SUT) as well as global model variables are declared on the

199

6 G. Carvalho, F. Barros, F. Lapschies, U. Schulze, J. Peleska

Table 1. Example of Case Frames.

Condition #1—Main Verb (CAC): is
CPT: the voltage CFV: - CMD: greater than CTV: 80
Condition #2—Main Verb (CAC): is
CPT: the flashing timer CFV: - CMD: greater than

or equal to
CTV: 220

Condition #3—Main Verb (CAC): is
CPT: the flashing mode CFV: - CMD: - CTV: left flashing
OR—Main Verb (CAC): is
CPT: the flashing mode CFV: - CMD: CTV: left tip flashing
Condition #4—Main Verb (CAC): are
CPT: the left

indication lights
CFV: - CMD: - CTV: off

Condition #5—Main Verb (CAC): are
CPT: the right

indication lights
CFV: - CMD: - CTV: off

Action #1—Main Verb (ACT): assign
AGT: the lights

controller component
TOV: on PAT: the left

indication lights
Action #2—Main Verb (ACT): assign
AGT: the lights

controller component
TOV: off PAT: the right

indication lights
Action #3—Main Verb (ACT): reset
AGT: the lights

controller component
TOV: - PAT: the flashing

timer

level of cr. All variables are typed. When parsing the model the scope rules are
applied to all expressions and unique variable symbol names are used from then
on. Therefore we can assume that all variable names are unique and taken from
a symbol set V with pairwise disjoint subsets I,O, T ⊂ V denoting TE→ SUT
inputs, SUT→ TE outputs and timers, respectively.

Each leaf component is associated with a state machine s ∈ SM , where SM
denotes the set of all state machines which are part of the model. State machines
are composed of locations (also called control states) ` ∈ L(s) and transitions
(τ = (`, g, α, `′) ∈ Σ(s) ⊆ L(s) × G × A × L(s)) connecting source and target
locations ` and `′, respectively. Transition component g ∈ Bexpr(V) denotes the
guard condition of τ , which is a Boolean expression over symbols from V . For
timer symbols t ∈ T occurring in g we only allow Boolean conditions elapsed(t, c)
with constants c. Intuitively speaking, elapsed(t, c) evaluates to true if at least
c time units have passed since t’s most recent reset. Transition component α
denotes a set of value assignments to variables in V , according to expressions
formed by variables of V. A transition without assignments is associated with an
empty set α = ∅. For more detailed definitions, refer to the RT-Tester technical
report [12]. Code 1 presents the Turn Indicator System IMR (later described).

3.2 From Case Frames to State Machines

Concerning the internal model representation, we extract components and state
machines from the case frames. Recall that the Agent (AGT) role represents
who performs the action. Thus, for each different AGT we create a parallel
component. Each system component comprises a state machine with a single
location, and, based on the case frames, we infer self-transitions.

200

Model Based Testing from Controlled Natural Language Requirements 7

Code 1. IMR of the Turn Indicator System.
1 SYSTEM { IMR { TOPLEVEL COMPONENT IMR {
2 ATTRIBUTES {
3 ATTRIBUTE o ld th e eme rg ency f l a sh i ng {SYMBOLTYPE: GlobalVar TYPE: in t }
4 . . .

5 ATTRIBUTE the emergency f l a sh ing {SYMBOLTYPE: InputVar TYPE: in t }
6 ATTRIBUTE the f l a sh ing mode {SYMBOLTYPE: OutputVar TYPE: in t }
7 ATTRIBUTE th e f l a s h i n g t ime r {SYMBOLTYPE: GlobalVar TYPE: c lock}
8 . . .

9 }
10 SUT COMPONENT IMR.SUT. the f lashing mode component { SC−LOCATIONS {
11 LOCATION NAME: I n i t i a l { EMANATING TRANSITIONS {
12 [0] [t rue] / . . . −−−> the f lashing mode component L0

13 }}
14 LOCATION NAME: the f lashing mode component L0 { EMANATING TRANSITIONS { . . . }}
15 }}
16 SUT COMPONENT IMR.SUT. th e l i g h t s c on t r o l l e r c omponen t { SC−LOCATIONS {
17 LOCATION NAME: I n i t i a l { EMANATING TRANSITIONS {
18 [3 3] [t rue] / . . . −−−> t h e l i gh t s c on t r o l l e r c omponen t L0

19 }}
20 LOCATION NAME: th e l i gh t s c on t r o l l e r c omponen t L0 { EMANATING TRANSITIONS {
21 . . .

22 [6 0] [((((((IMR. the vo l t ag e > 80) &&

23 ((t imeTick − IMR. t h e f l a s h i n g t ime r) >= 220)) &&

24 ((IMR. the f l a sh ing mode == 0) | | (IMR. the f l a sh ing mode == 4))) &&

25 (IMR. t h e l e f t i n d i c a t i o n l i g h t s == 0)) &&

26 (IMR. t h e r i g h t i n d i c a t i o n l i g h t s == 0)) &&

27 ((IMR. t h e l e f t i n d i c a t i o n l i g h t s != 1)

28 | | (IMR. t h e r i g h t i n d i c a t i o n l i g h t s != 0)))]

29 / . . . −−−> t h e l i gh t s c on t r o l l e r c omponen t L0

30 . . .

31 }}
32 }}
33 }}}

To illustrate this, consider the requirement REQ-007. We extract the tran-
sition: τ = (`i, gi,j , αi,j , `i), where `i represents the location of the ith state
machine, which is the one corresponding to the the lights controller component.
The guard of this transition is [v > 80∧elapsed(ft, 220)∧ ll = 0∧ rl = 0∧ (fm =
0 ∨ fm = 4)], where v represents the voltage, ft the flashing timer, ll the left
indication lights, rl the right indication lights, and fm the flashing mode. Besides
that, off is represented as 0, on as 1, left flashing as 0, and left tip flashing as 4.
Moreover, the actions associated with this transition are {(ll , 1), (rl , 0), (ft , 0)}.
See Code 1—this transition is presented in lines 22–29.

This code is not human-readable since it is a hidden artefact, which is au-
tomatically generated by our approach, whose purpose is to provide means for
generation of tests. Despite that, using the RT-Tester infrastructure it would be
possible to derive a readable UML model from it, but it is outside of the scope
of this work.

To extract transitions like the one just presented, and to create the IMR from
the case frames, we rely upon three main algorithms: (1) identify variables, (2)
identify transitions, and (3) create the internal model representation.

In the IMR, variables are of three possible kinds: input, output and global
variables (see Code 1, lines 2–9). Besides that, we support the following data
types: Integer, Floating point numbers, Boolean and Clock (timers). We consider
inputs as variables provided to the SUT by the testing environment; their values
cannot be modified by the system. Thus, a variable is classified as an input if

201

8 G. Carvalho, F. Barros, F. Lapschies, U. Schulze, J. Peleska

Algorithm 1: Identify Variables
input : caseFrameList
output : varList

1 for cf ∈ caseFrameList do
2 for andCond ∈ cf do
3 for orCond ∈ andCond do
4 varName = orCond.CPT;
5 var = varList.find(varName);
6 if var == null then
7 var = new Var(varName);
8 if “timer” ∈ varName then

var.setKind(GLOBAL);
9 else var.setKind(INPUT);

10 varList.add(var);

11 value = orCond.CTV;
12 var.addPossibleValue(value);
13 action = orCond.CAC;
14 if isPastTense(action) then

var.hasOldVersion = true;

15 for action ∈ cf do
16 varName = action.PAT;
17 var = varList.find(varName);
18 if var == null then
19 var = new Var(varName);
20 if “timer” ∈ varName then

var.setKind(GLOBAL);
21 else var.setKind(OUTPUT);
22 varList.add(var);

23 else if var.kind == INPUT then
24 var.setKind(OUTPUT);

25 value = action.TOV;
26 if “reset” ∈ action.ACT then value = 0;
27 var.addPossibleValue(value);

28 for var ∈ varList do
29 if var.hasOldVersion then
30 oldVarName = “ old” + var.name;
31 oldVar = new Var(oldVarName);
32 oldVar.setKind(GLOBAL);
33 oldVar.setType(var.type);
34 varList.add(oldVar);

Algorithm 2: Identify Transitions
input : caseFrameList
output : transMap

1 for cf ∈ caseFrameList do
2 guard = generateGuard(cf);
3 stmtMap = generateStatements(cf);
4 for stmtKey ∈ stmtMap.keys do
5 transList = transMap.find(stmtKey);
6 if transKey == null then
7 init trans;
8 trans.setGuard(guard);
9 trans.addStmts(

stmtMap[stmtKey]);
10 transList = new List();
11 transList.add(trans);
12 transMap.add(stmtKey,

transList);

13 else
14 hasSimilarTransition = false;
15 for trans ∈ transList do
16 if guard == trans.guard then
17 trans.addStmts(

stmtMap[stmtKey]);
18 hasSimilarTransition

= true;
19 break;

20 if !hasSimilarTransition then
21 init trans;
22 trans.setGuard(guard);
23 trans.addStmts(

stmtMap[stmtKey]);
24 transList.add(trans);

Algorithm 3: Create the IMR
input : varList, transMap
output : topCmp

1 init topCmp;
2 for var ∈ varList do topCmp.addVar(var);
3 init SUT;
4 topCmp.add(SUT);
5 init TE;
6 topCmp.add(TE);
7 for transKey ∈ transMap.keys do
8 init l0;
9 for trans ∈ transMap[transKey] do

10 specialGuard =
avoidLivelock(trans.guard);

11 trans.setGuard(trans.guard ∧
specialGuard);

12 l0.addTransition(l0, trans);

13 cmp = new Component(transKey);
14 cmp.addLocation(l0);
15 SUT.add(cmp);

and only if it appears only in conditions. All other variables, except the ones
whose type is a clock, are classified as outputs. Clock variables (timers) are
always classified as global variables. To distinguish between timers and others
variables, we require the former to have the word “timer” as a suffix.

Our algorithm for identifying variables (Algorithm 1) iterates over the list
of case frames (line 1) analyzing each condition (lines 2–3), which comprises a
conjunction of disjunctions, and each action (line 15). When analyzing condi-
tions, we extract variables from the Condition Patient (CPT) role. For example,
Table 1 shows that the voltage is the CPT of the first condition. Thus, if the
corresponding variable has not yet been identified (lines 5–6), we create a new
variable considering the CPT content, besides replacing the white spaces by an

202

Model Based Testing from Controlled Natural Language Requirements 9

underscore (line 7). So, in this case, we create the variable the voltage, previously
illustrated as v. If the variable is a timer, it is created as a global variable (line
8). Otherwise, the variable described by the CPT role is created as an input (line
9). Then we add the created variable to the list of identified variables (line 10).

To infer the type of the variable we analyze the value associated with it in
the case frame, which is the content of the Condition To Value (CTV) role.
For instance, the variable the voltage is associated with the value 80 in the
first condition of REQ-007 (see Table 1). Thus, the algorithm extracts the CTV
content (line 11), and adds it to a list of values already identified (line 12).

The addPossibleValue is responsible for invoking the algorithm updateType
(omitted here due to space restrictions), which is responsible for inferring and
updating the variable type. Briefly speaking, variables associated with values
are classified as integers or floating point numbers. Variables whose possible
value is true or false are classified as Booleans. Variables related to other words
are classified as integers, considering the enumeration of possible values. For
example, the variable the left indication lights is associated with the values off,
on (see Table 1). In this case, this variable is classified as an integer where off
is mapped to 0, and on is mapped to 1.

Lines 13–14 inspect the Condition Action (CAC) role to identify conditions
referring to the old (previous) state of the variable. This occurs when a verb in
the past tense is used (e. g., the voltage was 80 describes the situation where
the voltage was 80 in the previous system state). To deal with this situation,
we create a special variable, named by adding the prefix old to the variable
name, which is responsible for storing the variable value in the previous system
state (lines 28–34). As “old variables” are neither inputs nor outputs, they are
always classified as global. For the previous example, we create the variable
old the voltage. Lines 15–27 behave analogously to the previous explanations.

The differences are: (1) the variables are identified from the Patient (PAT) role;
(2) if a variable was already identified as an input its kind is updated to output
due to the reason presented in the beginning of this subsection; and (3) the
variable value is the content of the To Value (TOV) role, excluding the case
when the reset verb is used (the TOV is empty and we shall consider the value
0 as the possible value—see the last action of Table 1).

From the case frames we also extract transitions (see Code 1, lines 11–14,
lines 17–31). They are associated with the respective Agent (AGT) roles repre-
senting system components (one component per agent—see Code 1, lines 10, 16).
The algorithm for identifying transitions (Algorithm 2) iterates over each case
frame (line 1) and returns a mapping of components to their self-transitions (out-
put transMap). For each case frame, the algorithm extracts a guard expression
(line 2) and statements (line 3). The generateGuard algorithm (not presented
here) transverses recursively the conjunction of disjunctions of each case frame
and returns the transition guard according to the IMR format. Besides identify-
ing statements according to the IMR format, the algorithm generateStatements
groups the identified statements by their respective agents. For example, all ac-
tions of the requirement REQ-007 are performed by the same agent—the lights

203

10 G. Carvalho, F. Barros, F. Lapschies, U. Schulze, J. Peleska

controller component (see Table 1). Thus, in this case all statements of REQ-007
are grouped by the same agent.

For each different agent (line 4) we analyze if some transition has already been
identified with respect to this system component (lines 5–6). If it has not, we
create a new transition (line 7) considering the guard (line 8) and the respective
statements (line 9), we create a list of transitions for this component (line 10), we
add the created transition to this list (10), and we finally group this list by the
component being considered (line 12). If transitions have already been identified
to the component (line 13), we merge the actions of transitions whenever they
have the same guard (lines 14–19). Otherwise, we create a new transition, and
we add it to the list of transitions of this component (lines 20–24).

The third algorithm (Algorithm 3) is responsible for assembling the variables
and transitions into one IMR top component (output topCmp), which comprises
all parallel system components. First of all we initialize this top component (line
1), and add all variables to it (line 2). Then, we define that this top component
has two main subcomponents: the System Under Test (SUT) model (lines 3–4),
and the Testing Environment (TE) model (line 5–6). In this work, as we focus
on the SUT specification, the TE model is an empty component.

For each different agent (line 7), we create the single location l0 of the respec-
tive state machine (line 8). Then, we add the transitions associated to this agent
as self-transitions of this location (lines 9–12). Considering the semantics of the
IMR, which is detailed in Section 3.3, to avoid a livelock in the SUT specification
(the indefinite execution of transitions without time passing), we augment each
transition guard stating that it shall be performed if and only if the transition
has some side effect (it changes the value of some SUT variable—lines 10–11).
Finally, we create a system component (line 13), we add this single location to
the component state machine (line 14), and we define this component as a SUT
subcomponent (line 15). After performing these three algorithms we obtain a
model of our system requirements according to the IMR notation.

3.3 Transition Relation

For generating test cases with associated test data, the model behavior is for-
mally encoded by means of a transition relation Φ. We describe transition re-
lations relating pre- and post-states by means of first order predicates over un-
primed and primed symbols from BCS ∪ V ∪ {t̂}, where BCS =def

⋃
s∈SM L(s)

(“BCS” stands for “basic control states”). The unprimed symbols refer to the
symbol value in the pre-state, and the primed symbols to post-state values. The
variables with prefix “ old” are interpreted as unprimed symbols.

The transition relation distinguishes between discrete transitions ΦD and
timed transitions (also called delay transitions) ΦT , allowing the model execution
time t̂ to advance and inputs to change, while the basic configuration, internal
(excluding the special “old” variables) and output variables remain frozen. The
delay transition is also responsible for updating the variables with prefix “ old”.
Thus, before changing the value of inputs, it copies the current value of each

204

Model Based Testing from Controlled Natural Language Requirements 11

variable, which has an old version, to its old version. Discrete transitions take
place whenever at least one state machine has an enabled transition.

If a discrete transition is enabled its effects may be described as follows. (1)
The current model execution time t̂ remains unchanged. (2) All input variable
values remain unchanged. (3) For every state machine possessing an enabled
transition τ , the transition’s effect becomes visible in the post-state. (5) All
variables that are not modified by any executed transition retain their old values.

Delay transitions are characterized as follows. (1) The model execution time
is advanced. (2) Inputs may change for the post-state of the delay transition,
and the old version (pre-state) of variables are accordingly updated, but all
other variables and basic control states remain unchanged. (3) The admissible
time shift is limited by the point in time when the next timer will elapse. Due to
space restrictions, we do not present here the formal definition of this transition
relation. The reader can find it in the RT-Tester technical report [12].

3.4 Symbolic Test Cases, Concrete Test Data

In MBT test cases may be expressed as logical constraints identifying model
computations that are suitable to investigate a given test objective. We use the
term symbolic test cases for these constraints to emphasize that at this stage no
concrete test data to stimulate a model computation satisfying them exists. As
external representation of these constraints we use LTL formulas of the type Fφ,
where the free variables in φ are model variables, basic control states (interpreted
as Booleans, true indicating that the machines currently resides in this location),
and model execution time. The utilization of the finally operator F is motivated
by the fact that to test a given objective φ, a computation prefix may have to be
executed in order to reach a model state from where φ can be fulfilled. Since test
cases need to be realized by finite model computation fragments, symbolic test
cases are internally represented as so-called bounded model checking instances

tc(c,G) ≡def

c−1∧

i=0

Φ(σi, σi+1) ∧G(σ0, . . . , σc) (1)

In this formula σ0 represents the current model state and Φ the transition
relation, so any solution of 1 is a valid model computation fragment of length c.
The test objective φ is encoded in G(σ0, . . . , σc). For example 1, G(σ0, . . . , σc) =
G(σc) = ((

∨
i(`i(σc) ∧ ψi(σc))) ∧ φ1(σc)). Intuitively speaking, tc(c,G) tries to

solve Fφ within c computation steps, starting in model pre-state σ0. To solve
constraints of type 1 we use an SMT solver. Thus, the solver result can be seen
as a test case (sequence of test vectors) where each test vector comprises the
value of inputs and the system state with respect to a particular time moment.

Table 2 shows an example of a test case generated for the Turn Indicator
System. The first line tests that no lights shall be turned on, even if, for instance,
the turn indicator is on the right position, if the car voltage is too low (below 81
volts). However, when the voltage is greater than 80 (line 2), the lights shall be

205

12 G. Carvalho, F. Barros, F. Lapschies, U. Schulze, J. Peleska

turned on based on the turn indicator position (in this case, left position), and
the light shall remain on for 340ms, and off for 220ms, periodically.

Table 2. Example of Test Case.

TIME (ms) Voltage Emergency Button Turn Indicator Left Lights Right Lights
0 80 off right off off

7918 81 off left on off
8258 81 off left off off
8478 81 off left on off

Note that symbolic test cases are not necessarily satisfiable, since some goals
G(σ0, . . . , σc) in the bounded model checking instance (1) may not admit a solu-
tion, if they are generated by a purely syntactic evaluation of the IMR structure.

4 Tool Platform

The NAT2TESTIMR approach is fully supported by tools. The CNLParser is
the tool that receives the system requirements and, for each valid requirement
with respect to the SysReq-CNL, returns the corresponding ST. Next, the CF-
Generator tool provides a semantic interpretation for each ST, using verb case
frames (CF) as semantic representation. After that, the tool IMR-Generator
translates the case frames into the IMR.

Then, we use RT-Tester, a tool developed by Verified Systems International
GmbH in cooperation with the last author’s team at the University of Bremen,
which operates on the IMR and outputs test cases with concrete test data. Op-
tionally, the tool also generates the test procedures executing these test cases
in software or system testing (hardware-in-the-loop) environments. To check the
SUT responses against the test model (IMR), RT-Tester generates test oracles
from the given model. These run concurrently with the SUT, permanently check-
ing SUT outputs against expected value changes and associated points in time.

5 Empirical Analyses

The NAT2TESTIMR approach was evaluated in four different examples. The
Vending Machine (VM) example is an adaptation of the Coffee Machine pre-
sented in [7]. The machine outputs weak coffee (within 10 and 30 seconds after
the user request) if the user selects coffee too quickly (i. e., within 30 seconds
after inserting a coin), otherwise it outputs strong coffee. This example is an
interesting one since its behavior is highly dependent on time constraints. The
Nuclear Power Plant Control (NPP) is a simplified version of a control system
for safety injection in a nuclear power plant (NPP) as described in [8]. The Pri-
ority Command Function (PC) was provided by Embraer. It comprises a system
that decides whether the pilot or copilot will have priority in controlling the
airplane side sticks based on their position and on a priority button. The Turn

206

Model Based Testing from Controlled Natural Language Requirements 13

Indicator System(TIS) is a simplification of the specification that is currently
used by Daimler for automatically deriving test cases, concrete test data and
test procedures. In 2011, Daimler allowed the publication of this specification to
serve as a “real-world” benchmark supporting research of MBT techniques. Our
simplification results in a size reduction of the original model presented in [11],
but serves well as a proof of concept, because it still represents a safety-critical
system portion with real-time and concurrent aspects. Considering these exam-
ples, we evaluated the NAT2TESTIMR approach from three perspectives: (i)
performance; (ii) automatically generated versus manually written tests (only
for the Embraer example); and (iii) mutant-based strength analysis. All files
related to the empirical analyses (textual specification, case frames, IMR, test
cases, and Java code) are publicly available7, except for the files related to the
Embraer example due to disclosure restrictions.

5.1 Results and Analyses

Table 3 summarizes the data collected. As it can be seen, the TIS is the largest
example: 1,124 words and 21 requirements, which comprises 600 thematic roles,
whereas the other examples (VM, NPP, and PC) have an average of 320 words, 10
requirements, and 182 thematic roles. As a consequence of its complexity, more
symbolic test cases are identified to the TIS example (193) when compared to the
VM, NPP, and PC examples (62, 64, and 54 symbolic test cases, respectively).

The time measurements were done on an average configuration computer.
The figures indicate that the time required to process (parse) the requirements
and identify the thematic roles is linear with respect to the specification size.
Furthermore, these two tasks are performed in order of seconds. Differently, the
time required to generate the test cases from the obtained IMR had a sharper
increase with respect to the specification size. The most complex and larger
specification (TIS) required about 92 seconds, whereas the three other examples
needed no more than a few seconds. Despite that, the total time required to
apply the NAT2TESTIMR strategy is within 2 minutes in the worst case (TIS).
As the RT-Tester infrastructure has already proven to scale up for the full TIS
[11], we believe our strategy might scale as well since it reuses the RT-Tester
infrastructure and only adds a small overhead to process the requirements.

To evaluate the meaningfulness of the generated test vectors we compared the
vectors generated by our approach with the ones manually written by Embraer
specialists. This analysis was not done for the other examples since we did not
have access to test vectors manually written for them. Our strategy generated 16
of the 17 test vectors considered by the specialists (94.12%). The single missing
vector exercises a system behavior that is already tested by other test vectors,
and the strategies of the RT-Tester solver did not consider it. To evaluate the
test cases (sequence of test vectors) strength (ability to detect errors) we use
mutation operators since it yields statistically trustworthy comparison of test
cases strength in a controlled and systematic way [2]. Therefore, we created a

7 http://www.mbt-benchmarks.org

207

14 G. Carvalho, F. Barros, F. Lapschies, U. Schulze, J. Peleska

Table 3. Empirical Results of NAT2TESTIMR.

VM NPP PC TIS
General Information

Words: 353 331 276 1,124
Requirements: 11 11 8 21
Thematic roles: 191 184 172 600
Symbolic test cases: 62 64 54 193
Covered symbolic test cases: 20 (32.26%) 48 (75.00%) 44 (81.48%) 121 (62.69%)

Time Performance
Time to parse the requirements 0.59s 0.41s 0.03s 0.92s
Time to identify thematic roles: 0.02s 0.03s 0.02s 0.05s
Time to generate IMR and test cases: 1.07s 2.66s 0.95s 92.90s
Total time: 1.68s 3.10s 1.00s 93.87s

Vector Generation Precision Analysis
Generated × manual vectors - - 16 (94.12%) -

Mutant-Based Strength Analysis
Java (LOC): 57 46 34 226
Mutants generated: 364 317 144 1,126
Mutation score: 54.67% 69.04% 87.50% 98.05%

“correct” (at least with respect to our tests) Java implementation (224 non-
blank lines of code (LOC) in the largest case—TIS, and 34 LOC in the smallest
case—PC) for each example.

This implementation was created solely from the natural language require-
ments, and we avoided any design decision that could not be inferred from the
requirements. In other words, the abstract level of the Java specification is similar
to the requirements one. Furthermore, it is important to note that the Java code
was created with the purpose of assessing our strategy, and in a real environment
they would not be available yet, since we are generating test from initial and
high-level requirements. We used the µJava tool [9] considering 12 method-level
mutation operators for generating mutants. This tool created between 144, and
1,126 compiled mutants. Afterwards, we manually instrumented the Java code,
and ran the test cases generated by the NAT2TESTIMR approach. From these
mutants, 54.67% were killed in the worst case (VM), whereas 98.05% were killed
in the best case (TIS). It is worthy mentioning that the score obtained for the
test cases manually written by Embraer is 91.67%—near the NAT2TESTIMR

score (87.50%). We assumed a conservative approach [2] for analysis of large
numbers of mutants: we consider that all mutants are non-equivalent mutants.
Therefore, these figures might be higher if equivalent mutants are identified and
discarded.

The mutation score variation is justified by the number and percentage of
symbolic test cases covered by the RT-Tester standard MC/DC coverage strat-
egy, which was considered in all examples. As described in Section 3.4, sometimes
only a small number of the automatically generated symbolic test cases are satis-
fiable, and thus a small number of test vectors are generated8. When it happens,
in this case it is necessary to write user-defined test objectives to guide the test
generation process, and thus generate more test vectors. As this approach is de-

8 In the tests described by Table 3, test data for all feasible symbolic test cases could
be generated in an automated way.

208

Model Based Testing from Controlled Natural Language Requirements 15

pendent upon each example and user expertise, we did not consider it. As shown
in Table 3, the lowest mutation score is related to the lowest number/coverage
of symbolic test cases, and the symbolic test cases not covered are indeed not
satisfiable. Considering these results, the NAT2TESTIMR approach seems to be
a reasonable alternative for generating test cases from CNL requirements. De-
spite the promising results, some threats to validity might apply to our analyses.
The main one concerns external validity: we considered few examples (small to
medium size), and thus we cannot generalize our results to other examples.

6 Related Work

Previous works [3, 16, 13] have already addressed the generation of tests from
NL specifications. Differently from this work, they do not impose a standard-
ized way of writing as our SysReq-CNL does. Moreover, these works require
user interaction during the process, whereas we do not. However, the strategy
proposed in [13] is capable of generating tests for more concrete specifications
(embedded with design decisions). We consider only high-level specifications. The
works [4, 10, 15] provide a standardize way of writing requirements, but they do
not deal with timed specifications and they generate non-executable test cases.
However, the test generation of [10] is proved sound, whereas ours is not. The
work [14] considers time but within more limited requirement structures. In [5]
(NAT2TESTSCR) we use a transformation from CNL to the SCR notation in
[5] and apply the T-VEC tool for generating tests. Differently, this paper uses a
novel semantic encoding of the CNL behavior in the form of a timed transition
relation. This new approach can handle time in a natural way, whereas in [5]
auxiliary construction based on counters had to be applied.

7 Conclusion

This paper presented NAT2TESTIMR: an MBT technique based on natural lan-
guage requirements. The requirements are syntactically analyzed according to
our CNL, and their informal semantics is captured based on the Case Gram-
mar theory. Then, the requirements semantics is automatically mapped into a
Transition Relation, which provides the formal basis for MBT. Concrete test
cases with associated data are generated with the support of an SMT solver.
Our approach was evaluated considering four examples from different domains.
Within seconds, it generated 94% of the test vectors manually written by spe-
cialists. Moreover, considering a mutant-based strength analysis, our approach
yielded a mutation score between 54% (worst case) and 98% (best case). Despite
the promising results, our approach is tailored for generating tests for high-level
requirements of the form of action statements guarded by conditions, and thus
other MBT techniques should be considered when testing more concrete speci-
fications. Therefore, the tests generated by NAT2TESTIMR provide means for
early testing/simulation of models at design level. As future work we plan to
(1) create a hierarchical IMR instead of our current flat structure, in order to

209

16 G. Carvalho, F. Barros, F. Lapschies, U. Schulze, J. Peleska

enhance the performance of our approach (we plan to consider the results of
[6] for this purpose), and (2) extend of our approach for textual specification of
testing environments.

Acknowledgments. We thank Augusto Sampaio for his valuable advice. This
work has been partially funded by the EU FP7 COMPASS project (no.287829).

References

1. Allen, J.: Natural Language Understanding. Benjamin/Cummings (1995)
2. Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appropriate tool for

testing experiments? In: International Conference on Software Engineering. pp.
402–411. ACM, New York, NY, USA (2005)

3. Boddu, R., Guo, L., Mukhopadhyay, S., Cukic, B.: RETNA: from requirements to
testing in a natural way. In: International Requirements Engineering (2004)

4. Brottier, E., Baudry, B., Traon, Y.L., Touzet, D., Nicolas, B.: Producing a global
requirement model from multiple requirement specifications. In: International En-
terprise Distributed Object Computing Conference. pp. 390–. USA (2007)

5. Carvalho, G., Falcão, D., Barros, F., Sampaio, A., Mota, A., Motta, L., Black-
burn, M.: Test case generation from natural language requirements based on SCR
specifications. In: ACM Symposium on Applied Computing (2013)

6. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state
machines from abstract state machines. Softw. Eng. Notes 27(4), 112–122 (2002)

7. Larsen, K., Mikucionis, M., Nielsen, B.: Online Testing of Real-time Systems using
Uppaal: Status and Future Work. In: Dagstuhl Seminar Proceedings volume 04371:
Perspectives of Model-Based Testing (2004)

8. Leonard, E.I., Heitmeyer, C.L.: Program synthesis from formal requirements spec-
ifications using APTS. Higher Order Symbol. Comput. 16, 63–92 (March 2003)

9. Ma, Y.S., Offutt, J., Kwon, Y.R.: Mujava: an automated class mutation system:
Research articles. Softw. Test. Verif. Reliab. 15(2), 97–133 (Jun 2005)

10. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case
models. Formal Aspects of Computing 1, 1–50 (2012)

11. Peleska, J., Honisch, A., Lapschies, F., Löding, H., Schmid, H., Smuda, P., Vorobev,
E., Zahlten, C.: A real-world benchmark model for testing concurrent real-time sys-
tems in the automotive domain. In: Wolff, B., Zaidi, F. (eds.) Testing Software and
Systems. Proceedings of the 23rd IFIP WG 6.1 International Conference, ICTSS
2011. LNCS, vol. 7019, pp. 146–161. IFIP WG 6.1, Springer, Heidelberg (2011)

12. Peleska, J., Vorobev, E., Lapschies, F., Zahlten, C.: Automated model-based test-
ing with RT-Tester. Tech. rep., Universität Bremen (2011)

13. Santiago Jnior, V., Vijaykumar, N.L.: Generating model-based test cases from
natural language requirements for space application software. Software Quality
Journal 20, 77–143 (2012)

14. Schnelte, M.: Generating test cases for timed systems from controlled natural lan-
guage specifications. In: International Conference on System Integration and Reli-
ability Improvements. pp. 348–353 (2009)

15. Sinha, A., Jr., S.M.S., Paradkar, A.: Text2Test: Automated inspection of natural
language use cases. In: International Conference on Software Testing, Verification
and Validation. pp. 155–164. IEEE Computer Society, Washington (2010)

16. Sneed, H.: Testing against natural language requirements. In: International Con-
ference on Quality Software. pp. 380 –387 (2007)

210

Refinement Tree and Its Patterns: a Graphical
Approach for Event-B Modeling

Kriangkrai Traichaiyaporn and Toshiaki Aoki

School of Information Science
Japan Advanced Institute of Science and Technology (JAIST), Japan

{kriangkrai.tr, toshiaki}@jaist.ac.jp

Abstract. Event-B is a famous formal approach for verifying the re-
quirements specification of safety-critical systems. Even though Event-B
is a good formal approach which is successful in applying to several prac-
tical case studies, we think that additional methods are needed to apply it
to the safety critical systems. Once we identify the requirements, Event-
B allows us to formally describe the requirements. However, Event-B
does not explicitly support analysing and elaborating requirements them-
selves. Although refinement mechanisms provided by Event-B is useful
to stepwise model concrete requirements from abstract ones, guideline of
the refinements is not provided. This paper aims to propose a refinement
tree diagram and its refinement patterns to provide the requirements
analysis and elaboration, and the guideline for Event-B. The diagram
and the patterns are partially derived from the KAOS method, a goal-
oriented requirements engineering method. The utility of the diagram
and the patterns is successfully shown by applying them to three prac-
tical case studies.

1 Introduction

In the development of safety-critical systems, most of the typical approaches, to
guarantee that the systems are sufficiently safe, start from ensuring the correct-
ness of requirements specifications. Formal methods are recommended for ver-
ifying the correctness by the functional safety standards such as ISO26262 [8].
It is common that the requirements specifications are too complex to be for-
mally verified all at once. Thus, refinement techniques are applied to reduced
the complexity by stepwise transforming an abstract specification into a con-
crete specification. Among the refinement techniques, the refinement mechanism
provided by Event-B is a more flexible one comparing to the related languages
such as Z [15] and VDM [9].

Event-B [3] is a formal specification language for modeling and verifying
system requirements through the refinement mechanism. Event-B has been suc-
cessfully applied to several practical safety-critical systems. Some examples are a
train controller system [16], hybrid systems [17], and a metro system [14]. Event-
B can be regarded as a method for correct-by-construction system development.

211

Even though Event-B is a good formal approach which is successful in apply-
ing to several practical case studies, it lacks some methods, which are necessary
for the practical development of the safety-critical systems. This paper focuses
on dealing with two issues in Event-B. Firstly, Event-B provides no method for
analyzing and elaborating requirements specifications. The method is needed to
specify essential information of the safety-critical systems. Without sufficiently
specifying the information, it is impossible to justify that a system is safe. Sec-
ondly, there is no guideline for using the refinement mechanism in Event-B effec-
tively. Given that a complicated system is being modeled in Event-B, designers
and developers of the system might have no idea how to organize the refinement
steps which is a source of difficulty in the usage of refinement [2].

In this paper, we aim to fulfil what Event-B lacks by proposing a refinement
tree diagram and its refinement patterns. The refinement tree diagram is to
graphically show the steps of refinement of the modeled specification in the form
of tree structure. The diagram is designed in a way that it can be easily trans-
formed into the Event-B specification. The refinement patterns are proposed in
addition to the diagram to guide the refinement of the Event-B specification.
The diagram along with the patterns are created by adapting the concepts from
the goal model and the goal refinement patterns of the KAOS method [19].

The KAOS method is a goal-oriented requirements engineering method for
analyzing and elaborating requirements. Its core model, the goal model, is cre-
ated through the notion of goal refinement. The goal refinement provides a nearer
way to how human stepwise refines requirements and is, thus, easy to understand.
The KAOS method includes a set of goal refinement patterns to efficiently refine
goals by following the frequently-used refinement tactics. Seeing that the KAOS
method provides what we need to fulfil Event-B, we apply the KAOS method to
Event-B. However, the formal semantics of the KAOS method and the formal
specification of Event-B are different. Their notions of refinement are different
as well. Consequently, instead of directly using the goal model, we propose the
refinement tree diagram and the refinement patterns based on the goal model
and the goal refinement patterns.

The refinement tree diagram and the refinement patterns are applied to model
three practical safety-critical case studies. From the case studies, we find that
we can specify the necessary information, such as behavior, inputs, and output,
through the refinement tree diagram in a similar manner to the KAOS method.
Furthermore, the refinement patterns can guide the way to stepwise refine the
specifications of the case studies well. Therefore, we conclude that the refinement
tree and the refinement patterns can complement Event-B.

The remainder of this paper is organized as follows. Section 2 overviews
Event-B and the KAOS method. Section 3 explains the motivation behind the
creation of the refinement tree diagram. Section 4 and 5 describe the refinement
tree diagram and its patterns respectively. Section 6 briefly demonstrates the
application of our diagram and patterns on three case studies, and the results.
Relevant issues from the results are discussed in Section 7. Related works are
discussed in Section 8. Finally, Section 9 concludes this paper.

212

2 Background

This section provides a short overview of Event-B and the KAOS method.

2.1 Event-B

Event-B [3] is a formal specification language for modeling specification of sys-
tems. The language is based on first-order predicate logic and discrete transition
systems. The main feature of Event-B is its refinement mechanism to incremen-
tally constructing a specification from an abstract one into a concrete one.

A specification described in Event-B may be divided into a static part called
the context, and a dynamic part called the machine. In this paper, we simply
assume that there is some context and do not mention it explicitly. Machines are
for describing behavioral properties of the specifications. Machines contain all of
the state variables. Types and properties of the variables are declared through
invariants in a form of the predicate. The values of the variables can be changed
by the execution of events.

From an abstract machine containing a collection of variables, invariants, and
events, the refinement mechanism of Event-B allows us to refine the abstract
machine into a concrete machine by adding new variables, adding new events,
rewriting events description to handle new variables, strengthening the guards,
and so on. To explicitly associate the abstract machine and the concrete machine,
a term ‘refines’ following with the name of the abstract machine is written in the
description of the concrete machine. Even though there are many ways to refine
a machine, they are restricted by the syntactic rules and the proof obligations
of Event-B. This is for preventing the description of the concrete machine from
contradicting the description of the abstract machine.

Describing a specification in Event-B is always in a top-down style. The
Event-B specification always start from describing the most abstract machine
called ‘initial machine’. Then, the initial machine is gradually refined into the
first refinement, the second refinement, and so on.

An event in a machine can be represented by the following form:

evt =̂ refines a_evt anyp when G with W then S end

where a_evt is the name of the abstract event, p denotes internal parameters
of the event, G is a predicate denoting guards, and S denotes the actions that
update some variables ands can be executed only when G holds. When we refine
an abstract event, some variables of that event might be disappeared in its
concrete event.W denotes witnesses that are additional elements in the concrete
event for indicating the disappeared variables and their values. Again, the term
‘refines’ is written in the description of the concrete event to explicitly associate
it with the corresponding abstract event. In the semantics of Event-B, if an
event does not have the term ‘refines’ in its description, it means that the event
implicitly refine an event named skip, which is a blank event.

213

2.2 The KAOS method

KAOS (‘Knowledge Acquisition in autOmated Specification’ or ‘Keep All Ob-
jects Satisfied’) [19] is a goal-oriented requirements engineering method with
several UML-like models. The central model of the KAOS method is the goal
model to show relationships among goals of a system in a tree structure.

The goal model consists of a refinement graph expressing how higher-level
goals are refined into lower-level ones and, conversely, how lower-level goals con-
tribute to higher-level goals. The higher-level goals are in general strategic and
coarse-grained whereas lower-level goals are technical and fine-grained. In a re-
finement graph, a node represents a goal, and an AND-refinement link relates
a parent goal to a set of sub-goals. A parent goal must be satisfied when all of
its sub-goals are satisfied. The relationship between a parent goal and the set of
its sub-goals is called goal refinement. The process of goal refinement is intuitive
and can drive the analysis and elaboration of requirements. Formally, all goals
can be represented in linear temporal logic.

An effective way to construct a goal model is by reusing goal refinement
patterns [6]. The goal refinement patterns are frequently used patterns for re-
fining a goal into sub-goals. Each pattern suggests specific refinements for in-
stantiation to the specifics of the modeled system. For examples, the milestone-
driven refinement pattern is for establishing a necessary intermediate step (a
milestone condition) for reaching a target condition from a current condition,
and the decomposition-by-case refinement pattern is to introduce different cases
for reaching a target condition. This pattern also checks that all possible cases
are determined in the decomposition, and they are disjoint. The two examples
refinement patterns are shown in Figure 1. Parameters are used in each pattern
for representing conditions. Ones can instantiate a pattern by replacing each pa-
rameter with a corresponding condition from the modeled system. The patterns
are proved to be complete and consistent in term of the linear temporal logic.

Achieve
[TargetCondition

If CurrentCondition]

Achieve
[TargetCondition

If CurrentCondition]

Achieve
[MilestoneCondition
If CurrentCondition]

Achieve
[MilestoneCondition
If CurrentCondition]

Achieve
[TargetCondition

If MilestoneCondition]

Achieve
[TargetCondition

If MilestoneCondition]

(a) milestone-driven pattern

Achieve[TargetCondition]Achieve[TargetCondition]

Achieve
[TargetCondition1

If Case1]

Achieve
[TargetCondition1

If Case1]

Achieve
[TargetCondition2

If Case2]

Achieve
[TargetCondition2

If Case2]

If TargetCondition1
or TargetCondition2

then TargetCondition

If TargetCondition1
or TargetCondition2

then TargetCondition

Case1 XOR Case2Case1 XOR Case2

(b) decomposition-by-case pattern

Fig. 1. KAOS goal refinement patterns

In the context of the KAOS method, the pattern:

Achieve[TargetCondition (If CurrentCondition)]

214

prescribes goals where some target properties must be eventually satisfied in the
future after a current condition is satisfied. The current condition can sometimes
be omitted in the pattern.

3 Motivation

The motivation behind this work comes from what we find in the existing works
applying Event-B to practical case studies. An example is the work describing
in [1], which is about the formalization of hybrid systems in Event-B. The hybrid
systems are very important in the development of embedded systems where a
piece of software, the controller, is supposed to manage an external situation,
the environment. It is usual to find that most safety-critical systems are related
to the hybrid systems. One hybrid system described in the article is about a
system controlling trains to provide safe moves of the trains. A preliminary study
is performed before the system is modeled in Event-B. From the preliminary
study, some necessary invariants of the system are found, and the information
needed for deciding the current acceleration of a train is specified. Without
the preliminary study, those necessary information cannot be specified. This can
potentially cause the system to be unsafe. The preliminary study is undoubtedly
crucial, but no systematical way for the preliminary study has been proposed
for Event-B.

Another notice from [1] is that even though the work focused on the hybrid
systems, all of its examples have distinct ways to refine the system specifications
in Event-B. The advantage of the refinement mechanism is that it provide a
lot of (but limited) ways to refine an Event-B machine for widely supporting
various kinds of systems. Unfortunately, the refinement mechanism is usually
poorly used because it is not easy to decide how to organize the construction
steps [2]. A guideline for the refinement is needed.

We find that the KAOS method provides the goal model to analyze and
elaborate requirements through the intuitive notions of refinement, i.e. the goal
refinement. Besides, we think the requirements analysis and elaboration can be
regarded as the preliminary study. Therefore, we plan to apply the goal model
to fulfil what Event-B lacks, that is, the systematical preliminary study and the
guideline for using Event-B refinement.

Ideally, the most straightforward way to apply the goal model to Event-B is
by using the goal model to model a system and then directly create an Event-B
specification based on the goal model. However, the logic behind the two ap-
proaches are different, i.e. the linear temporal logic and the first-order predicate
logic. In addition, their semantics of refinement are different. Goal refinement
means that when all sub-goals are satisfied, then their parent goal is satisfied.
The refinement mechanism is that a concrete machine preserves the properties
described in the abstract machine. Thus, it is difficult to directly apply the goal
model to Event-B. As a result, we rather propose the refinement tree diagram to
assist constructing and refining Event-B machines. The refinement tree diagram
is similar to the goal model, but it can be transformed into Event-B specification.

215

Then, we propose a set of refinement patterns to help users to efficiently con-
struct a refinement tree diagram similar to how the goal refinement patterns of
KAOS guide the construction of the goal model. Some of our refinement patterns
are derived from the goal refinement patterns.

4 The Refinement Tree Diagram

Refinement tree diagram is a diagram showing refinements of event from a se-
quence of refinements of Event-B machines in the form of tree. We design the
refinement tree diagram in a way that it can graphically support:

– Demonstrating the refinements of events
– Justifying new events and invariants of a machine
– Separation of steps of refinement
– Transformation to Event-B specification

Each node of the refinement tree diagram represents either an event or an
invariant. Arrows represent refinements of events and are used for separating
steps of refinement. Lines among the nodes represent associations among the
components. An example of the refinement tree is shown in Figure 2. Through
this example, all the details about the refinement tree diagram are gradually
explained in the following subsections.

[Before >]

skip

Evt1
When Q=TRUE
Then R:=TRUE

Evt1
When Q=TRUE
Then R:=TRUE

Evt2
When P=TRUE
Then Q:=TRUE

Evt2
When P=TRUE
Then Q:=TRUE

Evt2
When P=TRUE
Then Q:=TRUE

Evt2
When P=TRUE
Then Q:=TRUE

Evt1_1
When Q=TRUE and
 P=TRUE
Then R=TRUE

Evt1_1
When Q=TRUE and
 P=TRUE
Then R=TRUE

Evt1_2
When Q=TRUE
Then R:=TRUE and
 P:=FALSE

Evt1_2
When Q=TRUE
Then R:=TRUE and
 P:=FALSE

If R=TRUE and
P=FALSE then Q=TRUE

If R=TRUE and
P=FALSE then Q=TRUE

Fig. 2. An example refinement tree diagram

4.1 Nodes

In the refinement tree diagram, a parallelogram represents an Event-B event,
a trapezoid represents an Event-B invariant. Note that the description written
in the parallelogram strictly follows the way the event is described in Event-B
specification as explained in Section 2.1.

216

Each node representing either an event or an invariant is described by using
natural language. The natural language acts as identifiers for formal descriptions
in Event-B . Even if it acts only as the identifiers, the meaning of the natural
language should correspond to the formal specification. Therefore, the natural
language that can be used in the diagram is limited to what the first-order
predicate logic of Event-B can describe. For examples, if a predicate in Event-B
is written as (P = TRUE ∧ Q = TRUE) ⇒ R = FALSE where P , Q, R are
Boolean variables, one possible identifier of this predicate in the natural language
is “If P and Q become true then R becomes false”. This is up to what P , Q, R
represent in the specification.

From Figure 2, the event skip acts as the root of the refinement tree diagram
and it is always the root of all refinement tree diagrams. Excluding the root,
the example has five events; Evt1, Evt2, Evt1_1, Evt1_2, and Evt2; and an
invariant. Note that there are two events written with the same descriptions.
Both of them have the same name: Evt2.

4.2 Refinements of Events

A refinement of event is represented by an arrow with a small circle. The circle is
for linking all concrete events refining the same abstract event. Here, we specify
that ‘refinement of event’ means there are some changes in the description of a
concrete event comparing to its abstract event. If the description of a concrete
event is the same with its abstract event, we regard it as a ‘copy’ of the abstract
event. In this case, the arrow directly links two events to show the copy. Because
abstract events belong to an abstract machine and concrete events belong to a
concrete machine, the arrow can separate level of the refinement tree diagram.

The level of the refinement tree diagram containing only the root is called
the zeroth level. The zeroth level acts only as a root and is not necessary to
be transformed into Event-B specification. The subsequents levels are called the
first level, the second level, and so on. They respectively correspond to the initial
machine, the first refinement, and so on in Event-B.

From Figure 2, the first level contains the events Evt1 and Evt2, where Evt1
refines the root. The events of the first level must always refine the root, except
the event which can be linked with another event by some kinds of relationship.
In the bottom level, Evt2 is a copy of Evt2 from the higher level, so their
descriptions are the same. Evt1_1 and Evt1_2 refine Evt1. The bottom level
also contains an invariant.

Both the refinement and the copy of event can be written into Event-B spec-
ification as ‘refines’ relationships between abstract events and concrete events.
Each event in an upper level must be pointed by at least one arrow from the
subsequent level, since Event-B does not allow any abstract events to be missing
in the concrete machine.

217

4.3 Relationships among Events and Invariants

Here, we clearly separate the links showing relationships between events and the
links showing relationships between events and invariants. They are represented
by plain lines and dashed lines respectively. In facts, these relationships are not
shown in the original Event-B. We define the relationships to support justifying
new events and invariants of a machine in the refinement tree diagram. The
events and invariants which are linked by the plain lines and the dashed lines
must be only in the same level of the refinement tree diagram.

In the context of this paper, ‘new’ events mean the events added to a concrete
machine without explicitly refining an event from the abstract event. When the
new events are added to a machine, it might be unclear how the new events
interact with other events. The plain lines, linking two or more events, are defined
for the refinement tree diagram to show the interaction among new events and
others. The types of the relationship should also be written on the lines. For
example, Evt2 and Evt1 in Figure 2 are linked by a ‘before’ relationship, which
means that Evt2 is necessary to be executed before Evt1. This is because the
actions of Evt2 can trigger the guards of Evt1. Another type of relationship
used in this paper is the ‘parallel’ relationship. The events linked by the parallel
relationship means that they can interleave each other in the execution.

Invariants are needed for restricting possible values of variables. Thus, invari-
ants also restrict the possible results of events. Conversely, events might provide
us some ideas about important invariants needed to be include in a specification.
These relationships between events and invariants can be shown in a refinement
tree diagram through dashed lines between them as seen in Figure 2, which
contains a link from an invariant to the event Evt1_2. For convention, if an
invariant is related to a set of concrete events which refines the same abstract
event, it should link with the small circle representing the refinement rather than
linking with all the related events.

4.4 Transformation to Event-B specification

Since we allow using natural language to be identifiers of the Event-B descrip-
tions for events and invariants and the descriptions always contain variables, so
we need to know all variables and data structure which can represent data and
artifacts of a modeled system. In this paper, we assume that all needed variables
have been specified before creating a refinement tree diagram. Some approaches
that can be used for specifying the variables are the class diagram of KAOS [19]
and the UML-B [13].

Regardless of how variables and data structures are specified, the transfor-
mation from a refinement tree diagram into Event-B specifications can be done
through the following principles:

– All events and invariants within the same level of a tree must be written in
the description of the same Event-B machine.

218

– Two consecutive levels of a refinement tree diagram means that the lower
level is a concrete machine refines the abstract machine from the upper level.
This refinement relationship must be written in the concrete machine as the
clause refines followed by the abstract machine’s name.

– An event in a refinement tree diagram contains the terms any, when, with,
and then. Since these terms are directly derived from how an event is de-
scribed in Event-B. Each term written in a parallelogram can directly map
to the corresponding terms of an event in Event-B.

– Each arrow from an abstract event to a concrete event can be represented
in Event-B specification through the term refines followed by the name of
the abstract event.

The example in Figure 2 can be easily transformed into two Event-B ma-
chines. We assume that the variables P , Q, and R are Boolean variables. The
followings are parts of the machines which are derived from the example.

Initial machine:

Evt2 =̂when P = TRUEthen Q := TRUE end

Evt1 =̂when Q = TRUEthen R := TRUE end

First refinement:

Evt2 =̂ refines Evt2

when P = TRUE then Q := TRUE end

Evt1_1 =̂ refines Evt1

when Q = TRUE ∧ P = TRUE then R := TRUE end

Evt1_2 =̂ refines Evt1

when Q = TRUE then R := TRUE ∧ P := FALSE end

Invariant :R = TRUE ∧ P = FALSE ⇒ Q = TRUE

5 The Refinement Patterns

An efficient way to create a goal model is by using the goal refinement pat-
terns. We follow this concept by creating a set of refinement patterns for the
refinement tree diagram. The refinement patterns are generic patterns to refine
an abstract event into a set of concrete events with some invariants. Some re-
finement patterns are derived from the frequent ways to refine a machine found
in the existing Event-B specifications created by others. Some refinement pat-
terns are derived from the goal refinement patterns, since they are intuitive
and complete. At the moment, we have 4 patterns in total. Our original pat-
terns are phase-decomposition refinement pattern and event-forking refinement
pattern. The KAOS-based patterns are derived from the milestone-driven refine-
ment pattern and the decomposition-by-case pattern as described in Section 2.2.
The descriptions of each pattern can be found in the following subsections.

219

5.1 The phase-decomposition refinement pattern

...

skipskip

PHASE_1
When guards of PHASE_1
Then go to PHASE_2

PHASE_1
When guards of PHASE_1
Then go to PHASE_2

PHASE_2
When guards of PHASE_2
Then go to PHASE_3

PHASE_2
When guards of PHASE_2
Then go to PHASE_3

PHASE_N
When guards of PHASE_N
Then go to PHASE_1

PHASE_N
When guards of PHASE_N
Then go to PHASE_1

Fig. 3. The phase-decomposition-refinement pattern

The phase-decomposition refinement pattern (Figure 3) divides abstract be-
havior of a system into two or more phases. One phase is represented by one
event. Only the transition from one phase to another is described in each event.
The flow of transitions is in the form of a cycle for iterative behavior of the
system. This pattern is applicable for modeling an initial specification in Event-
B. The possible phases used for dividing behavior of a system are: input phase
and decision phase. The input phase is for monitoring inputs of the system. The
decision phase is for making a decision based on the inputs.

5.2 The event-forking refinement pattern

[parallel]
Event_1
When guard
Then action_1

Event_1
When guard
Then action_1

Event_2
When guard
Then action_2

Event_2
When guard
Then action_2

Event_1_1
When guard
Then action_1_1

Event_1_1
When guard
Then action_1_1

Event_1_2
When guard
Then action_1_2

Event_1_2
When guard
Then action_1_2

Event_2_1
When guard
Then action_2_1

Event_2_1
When guard
Then action_2_1

Event_2_2
When guard
Then action_2_2

Event_2_2
When guard
Then action_2_2

Fig. 4. The event-forking refinement pattern

This pattern (Figure 4) is for describing environmental behavior which is
usually non-deterministic and can behave in an arbitrary order. Inputs of a
system can be regarded as this kind of behavior. Thus, this pattern is applicable
to describe the input phase of the system. We call the creation of a group of
arbitrarily ordering events as event forking. One event denotes one input. The
event forking can be introduced to Event-B at both the higher level through
the parallel relationship, and the lower level through the refinements without
changing the guards.

220

5.3 The milestone-driven refinement pattern

This pattern is for decomposing an abstract event into the sequences of two or
more concrete events. The decomposition is done by introducing intermediate
steps (milestones) between the guard and action of the abstract event. Figure 5
shows the simplified form of the pattern, introducing just one intermediate step
to an abstract event. An invariants appearing in the pattern is to ensure that
after one event is executed, its action can trigger the next event to form a
sequence of events.

5.4 The decomposition-by-case refinement pattern

This pattern is for refining an abstract into two or more concrete events for
dealing with all possible cases of states of variables. One concrete event is sup-
posed to deal with one case. This is to determine that which actions should be
executed for each of the cases. Thus, this pattern is usually used in the decision
phase. It can also be used in the input phase, if there are some restrictions on
inputs which needs to be determine case-by-case. An invariant included in the
pattern is to ensure that all possible cases are determined, and they are disjoint.
Figure 6 shows a simplified form of this pattern which contains only two cases.

[Before>]

EVT
When guard
Then action

EVT
When guard
Then action

EVT_M
When guard
Then action_M and
subphase_M:=TRUE

EVT_M
When guard
Then action_M and
subphase_M:=TRUE

EVT
When guard_M and
subphase_M=TRUE
Then action

EVT
When guard_M and
subphase_M=TRUE
Then action

If guard_M and
subphase_M=TRUE

then guard

If guard_M and
subphase_M=TRUE

then guard

Fig. 5. The milestone-driven refine-
ment pattern

Event
When guard
Then action

Event
When guard
Then action

Event_C1
When guard and case1
Then action1

Event_C1
When guard and case1
Then action1

Event_C2
When guard and case2
Then action2

Event_C2
When guard and case2
Then action2

If guard then
(case1 xor case2)

If guard then
(case1 xor case2)

Fig. 6. The decomposition-by-case re-
finement pattern

6 Case Studies

Since our objective of this research is about the practical usage of Event-B, we
utilized our model in action on three examples derived from a real-world context.
The examples can show the practical utility of the refinement tree diagram along
with its patterns. The examples varied on their size and types of systems in order
to increase confidence in the utility of our approach.

Our approach was applied to a powered sliding door, an automatic gate
controller, and Electrical Power Steering (EPS) system. The powered sliding
door is derived from part 10 of ISO26262 [8]. The powered sliding door is a

221

sliding door of a vehicle which a user can request the door to be opened or
closed. The safety goal of the powered sliding door is “not to open the door
while the vehicle speed is higher than 15 km/h”. The automatic gate controller
is derived from [20]. The goal of this system is to allow only authorized persons
to enter a building through the automatic gate. Lastly, the EPS system, for
controlling the electric steering of cars, was developed in collaboration with a
company. The part of the EPS system which is used in this case study is the
part regarding the transition to a manual steering mode. This mode is to stop
the EPS system when a failure of the system is detected, and then, let the driver
manually control the steering of the car. Due to limitations of space, only the
simplified refinement tree diagram of the powered sliding door is shown in this
paper. If you are interested in the full diagrams of the three case studies, they
can be found in the appendixes of [18].

skipskip

INPUT
When input=TRUE
Then input:=FALSE

INPUT
When input=TRUE
Then input:=FALSE

RESULT
When input = FALSE
Then input:=TRUE

RESULT
When input = FALSE
Then input:=TRUE

Speed
When input=TRUE
Then input:=FALSE and
 change speed

Speed
When input=TRUE
Then input:=FALSE and
 change speed

Request
When input=TRUE and
Then input:=FALSE and
 send request or not

Request
When input=TRUE and
Then input:=FALSE and
 send request or not

RESULT_close
When input = FALSE and
 speed>15
Then input:=TRUE and
 close the door

RESULT_close
When input = FALSE and
 speed>15
Then input:=TRUE and
 close the door

RESULT_no_request
When input = FALSE and
 speed≤15 and
 no request
Then input:=TRUE and
 close the door

RESULT_no_request
When input = FALSE and
 speed≤15 and
 no request
Then input:=TRUE and
 close the door

RESULT_request
When input = FALSE and
 speed≤15 and
 request
Then input:=TRUE and
 open the door

RESULT_request
When input = FALSE and
 speed≤15 and
 request
Then input:=TRUE and
 open the door

Fig. 7. The simplified refinement tree diagram of the powered sliding door

Figure 7 shows the simplified refinement tree diagram of the powered sliding
door. We modeled the first level of the refinement tree diagram of the system
by, firstly, dividing the system into two phases, i.e. the input phase and the
decision phase, with the phase-decomposition pattern. a Boolean variable named
input was used to represent two phases. Then, the next level of the tree was
constructed by introducing the speed of vehicle, opening request , and the door.
The event-forking pattern was applied to introduce the speed and the request
to the diagram as two inputs of the system. The decomposition-by-case pattern
was used for determining that the door is opened or closed depending on the
speed and the request. It is trivial in the figure that all cases are determined, so
we omit the invariant of the pattern. We can extend the simplified diagram with
another level by introducing a switch. The door will be opened only when the
switch is on. The milestone-driven refinement pattern was applied to introduce
the step of turning the switch on before opening the door as shown in Figure 8.

We created the refinement tree diagrams for the other two case studies in
a similar way. Roughly, we started with dividing the systems with the phase-
decomposition pattern. Then, we applied our refinement patterns to gradually

222

[Before>]

RESULT_requestRESULT_request

switch_on
When input = FALSE and
 speed≤15 and
 request
Then speed_checked:=TRUE
 and switch is on

switch_on
When input = FALSE and
 speed≤15 and
 request
Then speed_checked:=TRUE
 and switch is on

RESULT_request
When speed_checked=TRUE
 and switch is on
Then input:=TRUE and
 door is opened and
 speed_checked=FALSE

RESULT_request
When speed_checked=TRUE
 and switch is on
Then input:=TRUE and
 door is opened and
 speed_checked=FALSE

If speed_checked=TRUE
and switch is on then
speed≤15 and request

If speed_checked=TRUE
and switch is on then
speed≤15 and request

Fig. 8. Turning the switch on to open the door

introduce new inputs and concepts into subsequent levels of their trees. However,
some nodes in some levels of their diagrams had to be determined manually. Most
of the manual events are the events which the variables in their descriptions are
replaced by new variables.

The full refinement tree diagrams of the powered sliding door, the automatic
gate controller, and the EPS system have 4 levels, 5 levels, and 8 levels respec-
tively. To discuss about the results, we counted the total number of events from
all levels of each resulted diagram. Those number are presented in Table 1. Here,
we divided the events into two types according to their sources. ‘Manual’ means
that the events are obtained manually, whereas ‘Patterns’ refers to the events
that are derived from the refinement patterns. Note that the number of the
copying events are omitted here. This is because the copying events are easily
derived and, thus, are irrelevant to the difficulty of the refinement.

Table 1. Number of events from the case studies according to sources of creation

Case study Manual Patterns Total
Powered Sliding Door 0 (0%) 19 (100%) 19

Automatic Gate Controller 8 (34.8%) 15 (65.2%) 23
EPS System 18 (32.7%) 37 (67.3%) 55

7 Discussion

From Table 1, we found that, at least, around two-thirds of the events in the
resulted refinement tree diagrams can be derived from our proposed refinement
patterns. The ‘Manual’ events were mostly for the replacement of variables with
the new ones. This kind of refinement can be regarded as vertical refinement for
enriching the structure of a model to bring it closer to an implementation struc-
ture [5]. Seeing that our approach focuses on specifying necessary information

223

for the safety requirements specification and the vertical refinement is just a sup-
plement to the identified necessary information. Thus, it was acceptable that the
patterns cannot handle the vertical refinement at the moment. Therefore, we can
conclude that the patterns are sufficient for modeling requirements specification
of the safety-critical systems. Besides, the applicability of the patterns did not
decrease when the specification was bigger. This fact can be discussed from the
percentage of the pattern-derived events of the automatic gate controller and
the EPS system that did not decrease much, even if the the EPS system was a
lot larger. As a result, the patterns are scalable.

In our experience modeling the case studies, we found that it was easy to jus-
tify and structure Event-B specifications by using the refinement tree diagram.
This was because the relationships among components of the specifications were
graphically shown. The concepts of the requirements analysis and elaboration
and how to structurally stepwise refine the specifications were also provided by
the patterns, which were sufficient and scalable. We conclude that the refine-
ment tree diagram and its patterns can fulfil what Event-B lacks as described in
Section 3.

Since the mechanism of the goal refinement is designed for decomposing a goal
into two or more sub-goals, one-to-one refinement, i.e. a goal is decomposed into
a single sub-goal, rarely occurs in KAOS. However, the one-to-one refinement
is possible in Event-B, e.g. we can just adding guards and/or actions into an
event for dealing with new variables of a concrete specification. Consequently, the
notations of the refinement tree diagram cannot handle the one-to-one refinement
well. This leads to the difficulty to create refinement patterns for the one-to-one
refinement in the form of the refinement tree. The incompetency to well handle
the one-to-one refinement is the current limitation of our approach. Actually,
the vertical refinement are often the one-to-one refinement.

8 Related Work

There are many approaches aiming to use the capabilities of the KAOS method
to guide Event-B modeling. All of them focus on the direct application of the
goal model to Event-B, whereas our approach presents a new diagram based
on the goal model. The approach in [11] directly applied the goal refinement
patterns of KAOS to model a specification in Event-B. A way to describe and
prove the KAOS goal refinement patterns in Event-B was defined. However, due
to the differences between KAOS and Event-B, it is not possible to represent
and prove all the goal refinement patterns in Event-B. This approach limits the
creation of a goal model to the application of only the compatible goal refinement
patterns. Rather, our approach provides a wider way to use patterns to guide the
refinement by allowing the adaptation of the goal refinement patterns and the
creation of new patterns for Event-B itself. The approaches described in [4, 12]
avoided the differences between the two frameworks by using only the leaf goals
of the goal model for modeling an initial specification in Event-B. This can
be done by regarding one leaf achieve goal as an event and/or an invariant.

224

Then, developers have to use other approaches to refine the initial specification
further. From this, the goal refinement does not relate to Event-B refinement.
While, our approach uses the whole proposed diagram to model an initial Event-
B specification along with the subsequent refinement steps.

We defined the refinement patterns of the refinement tree diagram for assist-
ing the Event-B modeling. In [7], Hoang, Furst, and Abrial proposed that it is
possible to create design patterns for Event-B. They proved this fact by propos-
ing provably-correct design pattern for a synchronous communication protocol
and applied it to model another synchronous communication protocol. The pur-
pose of the creation of their design patterns is to efficiently model a specification
in Event-B by reusing the existing Event-B specifications, which is similar to
our purposes. Hence, this work supports the creation of our refinement patterns.
Nonetheless, the refinements in their patterns are mostly the vertical refinement
which are different from the refinements in our refinement patterns.

In 2012, Kobayashi and Honiden [10] proposed an approach to plan what
models are constructed in each abstraction level of Event-B. The advantage of
this approach is that it can calculate how well a plan can mitigate the complexity
of a specification. This calculation is useful for selecting a plan from a set of
plans. However, to make a set of plans, their approach needs that all details of
a system, such as behavior, are already identified before the calculation. Our
approach lacks such calculation, but it is able to identify the necessary details,
together with the guideline for Event-B refinement. Thus, their work and our
approach can complement each other.

9 Conclusion

By observing the applications of Event-B in modeling specification of the safety-
critical systems, we found that Event-B lacks the requirements analysis and
elaboration, and the guideline for its refinement mechanism. To deal with the
issues, we adapted the concepts of the goal model and the goal refinement pat-
terns from the KAOS method to create the refinement tree diagram and the
refinement patterns. The refinement tree diagram can graphically demonstrate
the relationships among components of an Event-B specification. Thus, it is eas-
ier to understand and justify the specification. The diagram was useful because
it can be directly transformed into Event-B specifications. The refinement pat-
terns were capable to guide how to stepwise refine Event-B specifications. Then,
we successfully applied the refinement tree diagram and the patterns to three
case studies to model and verify them in Event-B. Therefore, the refinement
tree diagram and the refinement patterns can complement Event-B. We believe
that the approach described in this paper can encourage the use of the formal
methods like Event-B in the practical development of the safety-critical systems.

References

1. Jean-Raymond Abrial, Wen Su, and Huibiao Zhu. Formalizing hybrid systems
with Event-B. In Abstract State Machines, Alloy, B, VDM, and Z, pages 178–193.

225

Springer, 2012.
2. J.R. Abrial. Formal methods in industry: achievements, problems, future. In

Proceedings of the 28th international conference on Software engineering, pages
761–768. ACM, 2006.

3. J.R. Abrial. Modeling in Event-B: system and software engineering. Cambridge
University Press, 2010.

4. Benjamin Aziz, Alvaro Arenas, Juan Bicarregui, Christophe Ponsard, and Philippe
Massonet. From goal-oriented requirements to Event-B specifications. In First
Nasa formal method symposium (NFM 2009), Moffett Field, California , USA,
April 2009.

5. Kriangsak Damchoom and Michael Butler. Applying event and machine decompo-
sition to a flash-based filestore in Event-B. In Formal Methods: Foundations and
Applications, pages 134–152. Springer, 2009.

6. Robert Darimont and Axel Van Lamsweerde. Formal refinement patterns for goal-
driven requirements elaboration. ACM SIGSOFT Software Engineering Notes,
21(6):179–190, 1996.

7. Thai Son Hoang, A Furst, and J-R Abrial. Event-B patterns and their tool support.
In Software Engineering and Formal Methods, 2009 Seventh IEEE International
Conference on, pages 210–219. IEEE, 2009.

8. CD ISO. 26262, road vehicles–functional safety, 2011.
9. Cliff B Jones. Systematic software development using VDM, volume 2. Prentice

Hall Englewood Cliffs, 1990.
10. T. Kobayashi and S. Honiden. Towards refinement strategy planning for Event-B.

arXiv preprint arXiv:1210.7036, 2012.
11. Abderrahman Matoussi, Frédéríc Gervais, and Régine Laleau. A goal-based ap-

proach to guide the design of an abstract Event-B specification. In Engineering of
Complex Computer Systems (ICECCS), 2011 16th IEEE International Conference
on, pages 139–148. IEEE, 2011.

12. Christophe Ponsard and Xavier Devroey. Generating high-level Event-B system
models from KAOS requirements models. In Actes du XXIIème Congrès INFOR-
SID, pages 317–332, Lille, France, 2011.

13. Mar Yah Said, Michael Butler, and Colin Snook. Language and tool support for
class and state machine refinement in UML-B. In FM 2009: Formal Methods, pages
579–595. Springer, 2009.

14. R. Silva. Lessons learned/sharing the experience of developing a metro system case
study. arXiv preprint arXiv:1210.7030, 2012.

15. J Michael Spivey. The Z notation, volume 1992. Prentice Hall New York, 1989.
16. W. Su, J.R. Abrial, R. Huang, and H. Zhu. From requirements to development:

methodology and example. Formal Methods and Software Engineering, pages 437–
455, 2011.

17. W. Su, J.R. Abrial, and H. Zhu. Complementary methodologies for developing
hybrid systems with Event-B. Formal Methods and Software Engineering, pages
230–248, 2012.

18. Kriangkrai Traichaiyaporn. Modeling correct safety requirements using KAOS and
Event-B. Master’s thesis, School of Information Science, Japan Advanced Institute
of Science and Technology (JAIST), 2013. http://hdl.handle.net/10119/11496.

19. A. Van Lamsweerde. Requirements engineering: from system goals to UML models
to software specifications, volume 3. Wiley, 2009.

20. D. Zowghi and V. Gervasi. On the interplay between consistency, completeness,
and correctness in requirements evolution. Information and Software Technology,
45(14):993–1009, 2003.

226

Formal Semantics and Analysis of Timed Rebeca
in Real-Time Maude

Zeynab Sabahi-Kaviani1, Ramtin Khosravi1, Marjan Sirjani2,1,
Peter Csaba Ölveczky3, and Ehsan Khamespanah1

1 School of Electrical and Computer Engineering, University of Tehran
2 School of Computer Science, Reykjavik University

3 Department of Informatics, University of Oslo

Abstract. The actor model is one of the main models for distributed
computation. Timed Rebeca is a timed extension of the actor-based mod-
eling language Rebeca. Although Rebeca is supported by a rich verifica-
tion toolset, Timed Rebeca has not had an executable formal semantics,
and has therefore had limited support for formal analysis. In this paper,
we provide a formal semantics of Timed Rebeca in Real-Time Maude.
We have automated the translation from Timed Rebeca to Real-Time
Maude, allowing Timed Rebeca models to be automatically analyzed us-
ing Real-Time Maude’s reachability analysis tool and timed CTL model
checker. This enables a formal model-based methodology which combines
the convenience of intuitive modeling in Timed Rebeca with formal ver-
ification in Real-Time Maude. We illustrate this methodology with a
collision avoidance protocol for wireless networks.

1 Introduction

The importance of formal modeling and analysis for ensuring the dependability
and correctness of safety-critical systems has long been acknowledged. How-
ever, the lack of formal modeling languages close to programming and modeling
languages used by practitioners has limited the use of formal methods. Timed
Rebeca [1] is an actor-based [2] modeling language that extends the Rebeca lan-
guage [17] to support the modeling of distributed real-time systems. Because
of its Java-like syntax and its simple and intuitive message-driven and object-
based computational model, Timed Rebeca is an easy-to-learn language for sys-
tem developers, thereby bridging the gap between formal methods and practical
software engineering.

Although Rebeca is supported by a rich model checking toolset [15], model
checking of Timed Rebeca models has not been supported until now. Even
though Timed Rebeca has an SOS semantics, it lacks an executable formal se-
mantics that would enable automated analysis methods such as simulation and
temporal logic model checking.

However, providing an executable formal semantics for Timed Rebeca is quite
challenging. For example, since Timed Rebeca has a rich expression/statement
language that allows the values of state variables to grow beyond any bound,

227

and since the message queues can become arbitrarily long, Timed Rebeca cannot
be translated into popular real-time formalisms such as, e.g., timed automata.

In this paper, we provide a formal Real-Time Maude semantics for Timed
Rebeca. Real-Time Maude [12] is a specification formalism and analysis tool for
real-time systems based on rewriting logic [11]. With its natural time model and
expressive formalism, which is particularly suitable for formally specifying dis-
tributed real-time systems in an object-oriented way, Real-Time Maude should
be ideally suited for this challenging task. Real-Time Maude is supported by a
high-performance toolset providing a spectrum of analysis methods, including
simulation through timed rewriting, reachability analysis, and (untimed) linear
temporal logic model checking as well as timed CTL model checking.

We have automated the translation from Timed Rebeca to Real-Time Maude,
so that the user gets Real-Time Maude simulation and model checking of his/her
Timed Rebeca model for free. Furthermore, such formal analysis is being inte-
grated into the Rebeca toolset. This would of course not be very useful if the
user would need to understand the Real-Time Maude representation of his/her
Timed Rebeca model, and/or would need to define state properties in Real-Time
Maude, in order to model check his/her Timed Rebeca model. We have therefore
taken advantage of Real-Time Maude’s support for parametric state propositions
to predefine useful generic state propositions, so that the user can define his/her
(possibly timed) temporal logic properties without having to know Real-Time
Maude or understand how the mapping from Timed Rebeca works.

Altogether, this enables a formal model-engineering methodology that com-
bines the convenience of modeling in an intuitive actor language with Java-like
syntax with formal verification in Real-Time Maude. We illustrate this method-
ology with a collision avoidance protocol case study.

The rest of the paper is structured as follows. Section 2 briefly introduces
Timed Rebeca and Real-Time Maude. Section 3 explains the Real-Time Maude
formalization of the Timed Rebeca semantics. Section 4 defines some useful
generic atomic state propositions that allows the user to easily define his/her
temporal logic formulas without knowing Real-Time Maude. Section 5 illustrates
our methodology on a collision avoidance protocol. Finally, Section 6 discusses
related work and Section 7 gives some concluding remarks.

2 Preliminaries

2.1 Timed Rebeca

Since Timed Rebeca is an extension of the Rebeca modeling language, we first
introduce Rebeca and then explain Timed Rebeca in more detail.

Rebeca [17] is a pure actor-based modeling language suitable for specifying
distributed systems. Rebeca is supported by a rich model checking toolset [15].

A Rebeca model consists of a set of actors (called rebecs) that communicate
asynchronously by message passing. Each actor maintains a queue of messages
that it has received but not yet processed. An actor repeatedly takes a message

228

Model ::= Class∗ Main

Main ::= main { InstanceDcl∗ }
InstanceDcl ::= className rebecName(〈rebecName〉∗) : (〈literal〉∗);

Class ::= reactiveclass className { KnownRebecs Vars Constr MsgSrv∗ }
KnownRebecs ::= knownrebecs { VarDcl∗ }

Vars ::= statevars { VarDcl∗ }
VarDcl ::= type 〈v〉+;

Constr ::= className methodName(〈type v〉∗) { Stmt∗ }
MsgSrv ::= msgsrv methodName(〈type v〉∗) { Stmt∗ }

Stmt ::= v = e; | v =?(e1, . . . , en) | Send ; | if (e) { Stmt∗ } [else { Stmt∗ }] |
delay(e); | for (Stmt1; e; Stmt2) { Stmt∗ }

Send ::= rebecName.methodName(〈e〉∗) [after(e)] [deadline(e)]

Fig. 1. Abstract syntax of Timed Rebeca. Angle brackets 〈...〉 are used as meta paren-
thesis. Identifiers className, rebecName, methodName, v, literal , and type denote class
name, rebec name, method name, variable, literal, and type, respectively; and e de-
notes an (arithmetic or boolean) expression. In for loops, Stmt1 is the initialization
statement, e2 is a boolean expression (the loop execution condition), and Stmt2 is the
update statement (executed after each iteration).

from the beginning of its queue and executes the corresponding message server,
which may involve sending messages to other actors and changing the actor’s lo-
cal state. Execution is non-preemptive: the actor does not take the next message
from its queue before the running message server is finished.

A Rebeca specification defines a number of reactive classes and a main block.
A reactive class defines an actor type and its behavior as well as its relationship
to other actors. The body of a reactive class definition has three sections: known
rebecs, state variables, and message servers. A rebec can only send messages to
its known rebecs. The local state of a rebec is given by the values of its state
variables. The type of state variables can be integer types, Boolean, and arrays.

The message servers specify how the rebecs respond to incoming messages.
They may have parameters and may define local variables. The body of a message
server consists of a number of statements, including assignments, conditionals,
loops, and sending messages. The expressions contains common arithmetic and
logical operators. The nondeterministic assignment v =?(e1, . . . , ek) nondeter-
ministically assigns (the current evaluation of) one of the expressions ei to the
variable v. Each class has a constructor (with the same name as the class) which
initializes the state variables of its instances.

Timed Rebeca [1] is a timed extension of Rebeca whose abstract syntax is
given in Fig. 1. The following timed features have been added for specifying
distributed real-time systems:

229

– delay is a statement used to model computation times. Since we assume that
the execution times of the other statements to be zero, the computation time
must be specified by the modeler using the delay statement.

– after is a time tag attached to a message and defines the earliest time the
message can be served, relative to the time when the message was sent.

– deadline is a time tag attached to a message which determines the expiration
time of the messages, relative to the time when the message was sent.

When a message with tag after t is sent, it is added to the set of undelivered
messages and resides there until t time units have elapsed. Then, it is delivered,
i.e., appended to the receiving rebec’s message queue. The messages in a rebec’s
queue are therefore ordered according to their delivery time (if the delivery
time of two messages are the same, the order in which they are delivered is
selected nondeterministically). If the deadline of a message is reached, regardless
of whether it is delivered or not, the message is purged. A rebec takes a message
from its queue as soon as it can (i.e., when it has finished processing the previous
message, and there are some messages in the queue).

Figure 2 shows a Timed Rebeca model of a simple thermostat system com-
posed of two actors t and h of reactive classes Thermostat and Heater, respec-
tively. The actors are instantiated in the main block; e.g., Heater h(t):();

creates an instance h of Heater, passing t as its known rebec, and invoking
its constructor (with empty parameter list). The goal of the system is to keep
the temperature between 25 and 30 degrees. The Thermostat actor checks the
temperature every 5 time units, by sending a checkTemp message to itself (line
19). If the temperature is not in the acceptable range, it sends the Heater actor
h the proper on or off message, which expires after 20 time units (lines 16 and
18). It takes two time units for the heater to turn itself on or off. The heater
also models the change in the environment by nondeterministically changing the
temperature by 1 to 3 degrees every 10 time units (lines 47-49), and sending the
delta to the heater (line 50).

2.2 Real-Time Maude

Real-Time Maude [13, 12] extends the rewriting-logic-based Maude language and
tool [5] to support the formal specification and analysis of real-time systems. A
Real-Time Maude timed module is a tuple (Σ,E,IR,TR), where:

− (Σ,E) is a membership equational logic [5] theory where Σ is an algebraic
signature, declaring the sorts, subsorts, and functions of the system, and E
a set of confluent and terminating conditional equations. (Σ,E) specifies the
system’s states as an algebraic data type, and must contain a specification
of a sort Time modeling the (discrete or dense) time domain.

− IR is a set of (possibly conditional) labeled instantaneous rewrite rules spec-
ifying the system’s instantaneous (i.e, zero-time) local transitions, written
with syntax rl [l] : u => v, where l is a label. Such a rule specifies a one-
step transition from an instance of the term u to the corresponding instance
of the term v. The rules are applied modulo the equations E.

230

1 reactiveclass Thermostat {

2 knownrebecs {

3 Heater heater;

4 }

5 statevars {

6 int period;

7 int temp;

8 }

9 Thermostat() {

10 period = 5;

11 temp = 25;

12 self.checkTemp();

13 }

14 msgsrv checkTemp() {

15 if (temp >= 30)

16 heater.off() deadline(20);

17 if (temp <= 25)

18 heater.on() deadline(20);

19 self.checkTemp()

after(period);

20 }

21 msgsrv changeTemp(int delta) {

22 temp = temp + delta;

23 }

24 }

26 reactiveclass Heater {

27 knownrebecs {

28 Thermostat thermostat;

29 }

30 statevars {

31 boolean on;

32 int delta;

33 }

34 Heater() {

35 on = false;

36 self.run();

37 }

38 msgsrv on() {

39 delay(2);

40 on = true;

41 }

42 msgsrv off() {

43 delay(2);

44 on = false;

45 }

46 msgsrv run(){

47 delta = ?(1,2,3);

48 if (on == false)

49 delta = -1 * delta;

50 thermostat.changeTemp(delta);

51 self.run() after(10);

52 }

53 }

55 main {

56 Thermostat t(h):();

57 Heater h(t):();

58 }

Fig. 2. The Timed Rebeca model for a simple thermostat/heater system.

− TR is a set of (usually conditional) tick rules, written with syntax crl [l] :

{t} => {t′} in Time τ if cond, that model time elapse. { } is a built-in
constructor of sort GlobalSystem, and τ is a term of sort Time that denotes
the duration of the rewrite.

The initial state must be a ground term of sort GlobalSystem and must be
reducible to a term of the form {u} using the equations in the specification.

The Real-Time Maude syntax is fairly intuitive. A function symbol f in Σ
is declared with the syntax op f : s1 ... sn -> s, where s1...sn are the sorts
of its arguments, and s is its result sort. Equations are written with syntax
eq u = v, and ceq u = v if cond for conditional equations. The mathemati-
cal variables in such statements are declared with the keywords var and vars.
An equation f(ti, . . . , tn) = t with the owise (for “otherwise”) attribute can
be applied to a subterm f(. . .) only if no other equation with left-hand side
f(u1, . . . , un) can be applied.

A class declaration class C | att1 : s1, ... , attn : sn declares a
class C with attributes att1 to attn of sorts s1 to sn, respectively. An object
of class C is represented as a term < O : C | att1 : val1 ,..., attn : valn >

231

where O, of sort Oid is the object’s identifier, and where val1 to valn are
the current values of the attributes att1 to attn. The state is a term of sort
Configuration, and has the structure of a multiset of objects and messages,
with multiset union denoted by a juxtaposition operator that is declared asso-
ciative and commutative, so that rewriting is multiset rewriting.

The dynamic behavior of concurrent object systems is axiomatized by spec-
ifying each of its transition patterns by a rewrite rule. For example, the rule

rl [l] :

m(O,W)

< O : C | a1 : X, a2 : O’, a3 : Z >

=>

< O : C | a1 : X + W, a2 : O’, a3 : Z >

dly(m’(O’),X) .

defines a parameterized family of transitions in which a message m, with param-
eters O and W, is read and consumed by an object O of class C. The transitions
change the attribute a1 of the object O and send a new message m’(O’) with
delay X.

Formal Analysis. The Real-Time Maude tool provides a spectrum of analysis
methods, including:

– timed rewriting that simulates one behavior of the system up to certain
duration from an initial state;

– timed search analyzes whether a state matching a state pattern is reachable
from the initial state within a certain time interval;

– model checking to check whether each possible behavior from the initial state
satisfies a temporal logic formula. Real-Time Maude extends Maude’s lin-
ear temporal logic model checker. State proposition are terms of sort Prop,
and their semantics should be given by (possibly conditional) equations of
the form {statePattern} |= prop = b, for a b a term of sort Bool, which
defines the state proposition prop to hold in a state {t} if {t} |= prop evalu-
ates to true. A temporal logic formula is constructed by state propositions
and temporal logic operators such as True, False, ∼ (negation), /\, \/, ->
(implication), [] (“always”), <> (“eventually”), and U (“until”). The time-
bounded model checking command has the syntax mc {t} |=t ϕ in time

<= τ . for initial state {t} and temporal logic formula ϕ. Real-Time Maude
has also recently been equipped with a model checker for timed computation
tree logic (TCTL) properties [10].

3 Real-Time Maude Semantics of Timed Rebeca

This section explains how we have formalized the semantics of Timed Rebeca in
Real-Time Maude in an object-oriented style.

232

Specifying the Static Parts. In the Real-Time Maude semantics of a Timed
Rebeca model we need to keep track of (i) the declarations of the (message
servers of the) reactive classes; (ii) the rebecs in their current states; and (iii)
the set of as-yet undelivered messages.

Since the message servers do not change dynamically, we do not need to carry
them around in the state. Instead, the message servers are modeled by a function

op msgServer : ClassName MsgHeader -> Statements .

where msgServer(c, m) defines the code to be executed by a rebec of reactive
class c when it treats a message with header m. The sort Statements is a
straight-forward representation of the body of a message server. For example, in
our thermostat example, msgServer(Thermostat, Thermostat) equals

(period := 5) ; (temp := 25) ;

(sendSelf checkTemp with noArg deadline INF after 0)

and msgServer(Thermostat, checkTemp) equals

(if(temp >= 30) then (send off with noArg to "heater" deadline 20 after 0)) ;

(if(temp <= 25) then (send on with noArg to "heater" deadline 20 after 0)) ;

(sendSelf checkTemp with noArg deadline INF after 5)

We also have a function formalParams such that formalParams(c, m) returns
the list of the formal parameters of the message server for m in reactive class c.

We mostly omit the details of how basic Rebeca statements (e.g., assignments
and evaluation of expressions) are formalized in Real-Time Maude, and refer
to [3] for a thorough treatment of the Real-Time Maude formalization of the
evaluation of expressions in a fairly sophisticated language. The only expression
we mention is due to the possibility of having nondeterministic assignments. We
formalize the expression list ? (e1, e2, . . . , en) in a nondeterministic assignment
as a list e1 ? e2 ? . . . ? en using the following list data type:

sort NDExpr . subsort Expr < NDExpr .

op nil : -> NDExpr .

op _?_ : NDExpr NDExpr -> NDExpr [assoc id: nil] .

Since nil is the identity element for lists, Maude considers l and nil ? l and
l ? nil to be identical lists. In particular, a single expression e is considered by
Maude to be identical to the lists nil ? e and e ? nil and nil ? e ? nil.

The state of the Real-Time Maude representation of a Timed Rebeca model
is a multiset consisting of one Rebec object for each rebec in the system and one
message for each message in the set of undelivered messages.

A rebec is modeled by an object instance of the following class Rebec:

class Rebec | stateVars : Valuation, queue : MsgList,

classId : ClassName, toExecute : Statements,

knownRebecs : KnownList .

where stateVars represents the state variables of the rebec and the formal pa-
rameters of the message server being treated, together with their current values,
as a set of terms of the form var-name |-> value; queue is a ‘::’-separated list

233

of messages representing the message queue of the rebec; classId is the name
of the reactive class of the rebec; toExecute denotes the remaining statements
the rebec has to execute (and is noStatements if the rebec is not executing a
message server); and knownRebecs denotes the “known rebecs” of the rebec.

For example, the following term models the rebec "t" of class Thermostat

right after completing its constructor. Its state variables have the values 5 and
25, there is only one message in its queue (sent by itself), and the rebec is not
executing any message server.

< "t" : Rebec | stateVars : (’period |-> 5) (’temp |-> 25),

queue : (checkTemp with noArg from "t" to "t" deadline INF),

classId : Thermostat,

toExecute : noStatements,

knownRebecs : (Heater heater --> "h") >

Communication between rebecs takes place when a rebec sends a message
to another rebec (or to itself). The message is put into the multiset of undeliv-
ered messages until its message delay ends. It is then delivered to the receiver’s
message queue. Delivered messages are modeled using the constructor

msg _with_from_to_deadline_ : MsgHeader Valuation Oid Oid TimeInf -> Msg .

A delivered message therefore contains a header (the message name), its argu-
ments, the id of the sender rebec, the id of the receiver, and the time remaining
until the expiration (deadline) of the message. Delayed messages have the form
dly(m, t), where m is a message as above and t is the remaining delay of the
message, and where dly(m, 0) is considered to be identical to m [12].

Instantaneous Transitions. We next formalize the instantaneous actions of a
Timed Rebeca rebec using rewrite rules. We show 9 of the 16 rewrite rules that
define our semantics of the Timed Rebeca.

In the following rule, an idle rebec takes the first message from its queue and
starts executing the statements in the corresponding message server by putting
those statements into its toExecute attribute. Some additional bookkeeping is
also required: the formal parameters of the message server must be initialized to
the values in the message and added to the state variables; to clean up at the
end of the execution, we add a new statement removeVars to execute after the
statements in the message server have been executed:4

rl [takeMessage] :

< O : Rebec | stateVars : SVARS,

queue : (M with VAL from O’ deadline DL) :: MSGLIST,

classId : C, toExecute : noStatements >

=>

< O : Rebec | stateVars : SVARS VAL (’sender |-> O’),

queue : MSGLIST,

toExecute : msgServer(C, M) ; removeVars(VAL (’sender |-> O’)) > .

4 In this paper we follow the Maude convention that variables are written with (only)
capital letters, and do not show the variable declarations.

234

Because of the possibility of having nondeterministic assignments, the rewrite
rule modeling (both deterministic and nondeterministic) assignment is interest-
ing. The following rule uses pattern matching and the fact that the list con-
catenation operator ? is declared to be associate and to have identity nil to
nondeterministically select any possibly expression EX from a list of expressions.
This rule also covers deterministic assignment, since the list variables LIST1 and
LIST2 may both match the empty list nil. In addition, the rebec updates its
toExecute attribute to only execute the remaining statements:

rl [detAndNondetAssignment] :

< O : Rebec | stateVars : (VAR |-> VAL) SVARS,

toExecute : (VAR := LIST1 ? EX ? LIST2) ; STMTLIST >

=>

< O : Rebec | stateVars : (VAR |-> evalExp(EX, (VAR |-> VAL) SVARS)) SVARS,

toExecute : STMTLIST > .

We next describe the semantics of loops for (init; cond; update){body},
where init is a statement executed once in the beginning, cond is a Boolean
expression that must be true to continue the iterations, update is a statement
executed after each iteration, and body is a statement list executed in each iter-
ation. The semantics of loops is formalized in a standard “unfolding” style:

rl [forLoop] :

< O : Rebec | toExecute : for(INIT, COND, UPDATE, BODY) ; STMTLIST >

=>

< O : Rebec | toExecute : INIT ; iterate(COND, UPDATE, BODY) ; STMTLIST > .

rl [iterate] :

< O : Rebec | stateVars : SVARS,

toExecute : iterate(COND, UPDATE, BODY) ; STMTLIST >

=>

< O : Rebec | toExecute : if evalBoolExp(COND, SVARS) then

BODY ; UPDATE ; iterate(COND, UPDATE, BODY) ; STMTLIST

else STMTLIST fi > .

If the first statement is a send statement, the rebec creates a delayed message
which is added to the undelivered message soup.

rl [sendMessage] :

< O : Rebec | stateVars : SVARS,

toExecute : (send M with ARGS to REC deadline DL after AFT)

; STMTLIST , knownRebecs : (CN NK --> RCVR) NL >

=>

< O : Rebec | toExecute : STMTLIST >

dly(M with getVals(ARGS, SVARS, formalParams(CN,M)) from O to RCVR

deadline evalIntExp(DL,SVARS),

evalIntExp(AFT,SVARS)) .

Both DL and AFT are expressions evaluated using evalIntExp in the context
of the current variable assignment SVARS. The created message is added to the
system configuration; when its remaining delay becomes 0, the message becomes
“undelayed” as explained above, and can be received by the intended recipient,
which puts the message into its message queue:

235

rl [readMessage] :

(M with ARGS from O to O’ deadline DL)

< O’ : Rebec | queue : MSGLIST >

=>

< O’ : Rebec | queue : MSGLIST :: (M with ARGS from O deadline DL) > .

Another interesting case is the execution of a delay statement, which is
treated as follows: When the rebec encounters the delay statement, it evalu-
ates the delay expression using the current values of the variables. Once it has
done that, it leaves the delay statement in the beginning of its toExecute at-
tribute until the remaining delay becomes 0, when the rebec just continues with
the next statement. Decreasing the remaining delay is done by the tick rule be-
low. The following rules then, respectively, evaluate the delay expression at the
beginning of the delay, and finish the delay when the remaining delay is 0:

crl [evaluateDelayExpression] :

< O : Rebec | stateVars : SVARS, toExecute : delay(EX) ; STMTLIST >

=>

< O : Rebec | toExecute : delay(evalIntExp(EX, SVARS)) ; STMTLIST >

if not (EX :: Int) .

rl [endDelay] :

< O : Rebec | toExecute : delay(0) ; STMTLIST >

=>

< O : Rebec | toExecute : STMTLIST > .

Timed Behavior. The following “standard” object-oriented tick rule [12] is
used to model time advance until the next time when something must “happen”:

var SYSTEM : Configuration .

crl [tick] : {SYSTEM} => {elapsedTime(SYSTEM, mte(SYSTEM))} in time mte(SYSTEM)

if mte(SYSTEM) > 0 .

The variable SYSTEM matches the entire state of the system. The function mte

(maximal t ime elapse) determines how much time can advance in a given state.
If an instantaneous rule is enabled, it must be executed immediately; therefore,
mte of a state must be zero when an instantaneous rule is enabled in that state.

The function mte is the minimum of the mte of each rebec and each message
in the soup. As mentioned above, the mte must be 0 when the rebec has a
statement to execute which does not have the form delay(i), for an integer i;
in the latter case, the mte equals i. If there are no statements to be executed,
the mte equals 0 if the rebec has a message in its queue, and equals the infinity
value INF if the message queue is empty:

op mte : Configuration -> TimeInf [frozen (1)] .

eq mte(none) = INF .

eq mte(dly(M, T) CONF) = min(T, mte(CONF)) .

ceq mte(OBJECT CONF) = min(mte(OBJECT), mte(CONF)) if CONF =/= none .

eq mte(< O : Rebec | toExecute : noStatements, queue : empty >) = INF .

eq mte(< O : Rebec | toExecute : delay(T) ; STMTLIST >) = T .

eq mte(< O : Rebec | >) = 0 [owise] .

236

The function elapsedTime models the effect of time elapse on a state as
follows: The effect of time elapse on a rebec is that the remaining time until the
message deadline is decreased according to the elapsed time for each message
in the queue. Furthermore, the remaining delay of a delay statement being ex-
ecuted is also decreased according to the elapsed time. For messages traveling
between rebecs, their remaining delays and deadline are decreased according to
the elapsed time. In both cases, if the deadline expires before the message is
treated, the message is purged (i.e., becomes the empty configuration none):

op elapsedTime : Configuration Time -> Configuration [frozen (1)] .

eq elapsedTime(none, T) = none .

eq elapsedTime(dly(M with ARGS from O to O’ deadline T1, T2) CONF, T)

= (if T2 <= T1 then dly(M with ARGS from O to O’ deadline (T1 - T), T2 - T)

else none fi) elapsedTime(CONF, T) .

eq elapsedTime(< O : Rebec | toExecute : STMTLIST, queue : MSGLIST > CONF, T)

= < O : Rebec | toExecute : decreaseDelay(STMTLIST, T),

queue : decreaseDeadline(MSGLIST, T) > elapsedTime(CONF, T) .

op decreaseDelay : StatementList Time -> StatementList .

eq decreaseDelay(delay(T1) ; STMTLIST, T) = delay(T1 - T) ; STMTLIST .

eq decreaseDelay(STMTLIST, T) = STMTLIST [owise] .

op decreaseDeadlines : MsgList Time -> MsgList .

eq decreaseDeadlines(nil, T) = nil .

eq decreaseDeadlines((M with ARGS from O to O’ deadline T1) :: MSGLIST, T)

= (if T <= T1 then (M with ARGS from O to O’ deadline T1 - T) else none fi)

decreaseDeadlines(MSGLIST, T) .

4 Formal Analysis of Timed Rebeca Models

We have automated the translation of Timed Rebeca models to Real-Time
Maude. The translator is currently being integrated into RMC (Rebeca Model
Checker) [15] to support Real-Time Maude simulation, reachability analysis,
and untimed LTL and timed CTL model checking of Timed Rebeca models
from within the Rebeca toolset. To allow the Timed Rebeca modeler to define
his/her LTL and TCTL formulas without having to know anything about the
Real-Time Maude representation of his/her model, and without having to know
how to define atomic state propositions in Real-Time Maude, we have predefined
a number of useful generic atomic propositions. LTL and TCTL formulas can
then be defined using these propositions and the usual logical operators such
as ~ (not), /\ (conjunction), etc., linear temporal logic operators such as []

(always), <> (eventually), etc., and timed CTL operators such as AG (always),
AF[<= than t] (always reachable within time t), etc.

We have defined atomic propositions on the state variables of the rebecs.
The value of a state variable can be compared to constants of the same type
using common relational operators such as is (equality) and <=. For example,
the proposition variable of rebec <= value holds if the current value of the
state variable variable in the rebec rebec is less than or equal to value:

ops _of_is_ _of_<=_ _of_<_ ... : IntVar Oid Int -> Prop .

237

eq {CONF < O : Rebec | stateVars : (V |-> I) VAL >} |= V of O is J = I == J .

eq {CONF < O : Rebec | stateVars : (V |-> I) VAL >} |= V of O <= J = I <= J .

As an example, temp of "h" <= 30 is true if the temp state variable of the
rebec h is less than or equal to 30.

Likewise, we have defined generic propositions o hasSent m to o′, denoting
that rebec o has sent a message with header m to the rebec o′ and that the
message is still in the network; and o hasReceived m from o′ (the message with
header m is already in o’s queue), and the more generic o hasReceived m:

ops _hasSent_to_ _hasReceived_from_ : Oid MsgHeader Oid -> Prop .

eq {CONF dly((MN with VAL from O to O’ deadline T), T’)}

|= O hasSent MN to O’ = true .

eq {CONF < O : Rebec | queue : ML1 :: (MN with VAL from O’ to O deadline T) :: ML2 >}

|= O hasReceived MN from O’ = true .

op _hasReceived_ : Oid MsgHeader -> Prop [ctor] .

eq {CONF < O : Rebec | queue : ML1 :: (MN with VAL from O’ to O deadline T) :: ML2 >}

|= O hasReceived MN = true .

We can now easily define temporal logic properties of our Timed Rebeca models:

[] ((temp of "t" >= 30) -> <> (on of "h" is false))

5 Case Study: A Collision Avoidance Protocol

This section illustrates our modeling and verification methodology on the IEEE
802.11 RTS/CTS protocol for collision avoidance in wireless networks [7]. When
a node decides to send data to another node, it sends a Request to Send (RTS)
message to the destination node, which is expected to reply with a Clear to Send
(CTS) message. Other nodes in the network which receive RTS or CTS messages
wait for a certain amount of time, making the medium free for the two communi-
cating nodes. This mechanism also solves the hidden node problem, which occurs
when two nodes want to send data to the same node. The destination node is
in the range of both senders, but the senders are out of the range of each other
(hence, unaware of each other’s decision to send a message). In the protocol, the
destination node sends a CTS message to only one of the senders. The other
sender waits for a random amount of time, and then sends an RTS message to
the destination node. Furthermore, this protocol solves the exposed node problem
as well, where two adjacent nodes send data to two different destination nodes,
so that the interference of data transfer of adjacent senders results in message
collision. The problem is solved by preventing the senders from sending data
after receiving the CTS message from other sender nodes.

We have analyzed the following properties of our Timed Rebeca model:

– Collision freedom: there are not data messages from two different senders at
the same time.

– Starvation avoidance: A node that wants to send data to any destination
will eventually be able to do so.

238

– Delivery time bound: There must be an upper time bound on the data trans-
fer to a node that is not in the radio transmission range of the sender; this
time bound depends on the network topology and delays.

Our model uses the reactive classes Node and RadioTransfer. Each Node

knows a RadioTransfer rebec, which is responsible for broadcasting its messages
to all nodes in the node’s transmission range. To transmit data, the sender sends
an RTS message to the receiver (through its RadioTransfer rebec) and waits
for the response. When an RTS message is delivered, the receiver checks wether
the network is busy. If so, it sends an RTS message to itself after a random
backOff (modeled by a nondeterministic choice among the values {2, 3, 4}). If
the receiver is not the target of the message, it marks the status of the network
as busy. Otherwise, it sends a CTS message to the sender. Receiving an RTS
message is handled by the following message server:

msgsrv rcvRTS(byte sndr, byte rcvr) {

if (rcvr == id)

if (channelIdle) radioTransfer.passCTS(id, sndr);

else self.rcvRTS(sndr,rcvr) after(backOff);

else

channelIdle = false;

}

When a node receives a CTS message, it checks whether it is the target of the
message. If so, it sends its data. If not, it sets the network status to idle:

msgsrv rcvCTS(byte sndr,byte rcvr) {

if (rcvr == id) self.sendData();

else channelIdle = true;

}

We have performed the analysis on a 2.53 GHz Intel processor with 2GB
RAM, running Ubuntu 10.10. The case examined has four nodes in a ring topol-
ogy (each node has two adjacent nodes in its communication range). We have
analyzed different transmission topologies to also analyze the hidden node and
the exposed node problems.

To verify collision freedom, we must ensure that no two messages with differ-
ent senders exist in radio transfer range, which can be verified for all behaviors
up to time 1000 using the following model checking command:

(mc initState |=t

[] ~ ((("node1" hasSent passData) /\ ("node2" hasSent passData))

\/ (("node2" hasSent passData) /\ ("node3" hasSent passData))

\/ (("node3" hasSent passData) /\ ("node4" hasSent passData))

\/ (("node4" hasSent passData) /\ ("node1" hasSent passData)))

in time <= 1000 .)

The model checking result reported by Real-Time Maude in 5 minutes was true.
To analyze starvation freedom we use the following command, which states

that each node will eventually (within time 1000) be able to send a data message:

239

(mc initState |=t (<> ("node1" hasSent passData to "radioTransfer1")) /\

(<> ("node2" hasSent passData to "radioTransfer2")) /\

(<> ("node3" hasSent passData to "radioTransfer3")) /\

(<> ("node4" hasSent passData to "radioTransfer4")) in time <= 1000 .)

This model checking command returns a counterexample, since the protocol
suffers from starvation.

To analyze whether the upper time bound for a transmission from node 1
to node 3 via node 2 is less than t, we can use the TCTL formula ∀�(s12 →
∀♦≤tr32), where s12 is true if node 1 has just sent a message to node 2, and r32
is true if node 3 has just received the message from node 2. This can be verified
using the following command for t = 6:

(mc-tctl initState |= AG (("node1" hasSent passData to "node2") implies

(AF[<= than 6] ("node3" hasRcv rcvData from "node2"))) .)

The protocol fails to satisfy this property, because of the starvation. But changing
AF to EF makes the property hold; i.e., for all possible behaviors from the initial
state, there exists a path where the transmission can take place in less than 6
time units. Model checking this property took around 20 hours.

6 Related Work

Timed Actor Models. Although there are some actor-based modeling languages
for real-time systems, their lack of effective analysis tools is a significant obstacle
to applying formal verification to real systems. In some cases, assertion-based
verification is suggested to analyze invariance and other safety properties. How-
ever, there is need for more general verification methods, such as model checking
liveness properties and other (timed or untimed) temporal logic properties.

One real-time actor-based modeling language is RTSynchronizer [16]. The
formalism specifies the model in terms of a number of actors and a global syn-
chronizer which simulates the timed behavior of the actors. Each actor is ex-
tended with timing assumptions which are used by the synchronizer to figure
out the ready-to-execute messages of the actor. In contrast with the “pure” ac-
tor language Timed Rebeca, the computation in RTSynchronizer takes place
through interactions between the synchronizer and the actors. RTSynchronizer
provides limited verification by placing the desired invariant properties in the
body of the actors, but this approach does not support the model checking of
more general temporal logic properties. (See also below.)

Creol is an actor-based language for modeling concurrent objects enriched by
synchronization patterns and type system [8]. Jaghouri et al. add timing features
to Creol in [4], where they also develop a schedulability analysis technique, but,
again, there is no support for temporal logic verification of such models.

Work on Timed Rebeca. Aceto et al. in [1] suggested a mapping from Timed Re-
beca models to Erlang for simulation (but not further formal analysis) purposes.
A semantics based on floating-time transition system was recently proposed for

240

Timed Rebeca [9]. Schedulability and deadlock-freedom can be checked efficiently
using this semantics, but no state-based property can be verified.

Real-Time Maude as a Semantic Framework. Because of its expressiveness and
natural object-oriented model of distributed real-time systems, Real-Time Maude
has proved to be a suitable semantic framework in which a number of formal
modeling languages have been given a formal semantics. Examples of such mod-
eling languages include Ptolemy II discrete-event models, the Orc web orches-
tration language, subsets and synchronous versions of the avionics modeling
standard AADL, timed model transformation frameworks, and so on (see [14]
for an overview). However, the only work on Real-Time Maude semantics for
timed actor languages is the work by Ding et al. [6] on the above-mentioned
quite different RTSynchronizer model. Unfortunately, no details about the Real-
Time Maude semantics are given in [6], and it seems that their work does not
define the semantics for the entire language, but only for the case study of a
Simplex architecture modeled using RTSynchronizer. Furthermore, no attempts
at temporal logic model checking were performed in [6].

7 Conclusion

Using Real-Time Maude, we have defined the first executable formal semantics of
Timed Rebeca. This enables a wide range of formal analysis methods for Timed
Rebeca models, including simulation, reachability analysis, and both timed and
untimed temporal logic model checking. We have integrated such Real-Time
Maude analysis of Timed Rebeca models into the Rebeca toolset, and have de-
fined a number of useful atomic propositions, allowing the Timed Rebeca user to
define her desired properties without knowing Real-Time Maude. We illustrated
such verification of Timed Rebeca models on a collision avoidance protocol.

Since Timed Rebeca, with its Java-like syntax and simple and intuitive actor-
based communication model, should be easy to learn and use for people unfa-
miliar with formal methods, our work bridges the gap between practitioners and
formal methods, since it enables a model-engineering methodology that com-
bines the convenience of Timed Rebeca modeling with powerful formal analysis
in Real-Time Maude.

We have focused on providing a clean and intuitive semantics. If states en-
countered during the execution of a message server do not matter for the prop-
erties we are interested in, we could significantly optimize the semantics by exe-
cuting together, in one step, all the statements in a message server. This would
significantly reduce the number of interleavings and would drastically improve
the model checking performance. Finally, although the counterexamples from
the Real-Time Maude analyses should be fairly easy to understand, we should
nevertheless provide them in terms of the Timed Rebeca model.

241

References

1. Aceto, L., Cimini, M., Ingólfsdóttir, A., Reynisson, A.H., Sigurdarson, S.H., Sir-
jani, M.: Modelling and simulation of asynchronous real-time systems using Timed
Rebeca. In: Proc. FOCLASA’11. EPTCS, vol. 58 (2011)

2. Agha, G.: ACTORS – a model of concurrent computation in distributed systems.
MIT Press series in artificial intelligence, MIT Press (1990)

3. Bae, K., Ölveczky, P.C., Feng, T.H., Lee, E.A., Tripakis, S.: Verifying hierarchical
Ptolemy II discrete-event models using Real-Time Maude. Science of Computer
Programming 77(12), 1235–1271 (2012)

4. de Boer, F.S., Chothia, T., Jaghoori, M.M.: Modular schedulability analysis of
concurrent objects in Creol. In: Proc. FSEN’09. LNCS, vol. 5961. Springer (2009)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude – A High-Performance Logical Framework, LNCS, vol. 4350.
Springer (2007)

6. Ding, H., Zheng, C., Agha, G., Sha, L.: Automated verification of the dependability
of object-oriented real-time systems. In: Proc. WORDS Fall. IEEE (2003)

7. IEEE Standard for Information Technology - Specific Requirements Part 11: Wire-
less LAN Medium Access Control (MAC) and Physical Layer (PHY). IEEE Std
802.11e-2005 (Amendment to IEEE Std 802.11, 1999 Edition (Reaff 2003)) (2005)

8. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and System Modeling 6(1), 39–58 (2007)

9. Khamespanah, E., Sabahi, Z., Khosravi, R., Sirjani, M., Izadi, M.: Timed-rebeca
schedulability and deadlock-freedom analysis using floating-time transition system.
In: AGERE!’12, SPLASH Workshops. ACM (2012)

10. Lepri, D., Ábrahám, E., Ölveczky, P.C.: Timed CTL model checking in real-time
maude. In: Proc. WRLA’12. LNCS, vol. 7571. Springer (2012)

11. Meseguer, J.: Conditioned rewriting logic as a united model of concurrency. The-
oretical Computer Science 96(1), 73–155 (1992)

12. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

13. Ölveczky, P.C., Meseguer, J.: The Real-Time Maude tool. In: Proc. TACAS’08.
LNCS, vol. 4963. Springer (2008)

14. Ölveczky, P.C.: Semantics, simulation, and formal analysis of modeling languages
for embedded systems in Real-Time Maude. In: Formal Modeling: Actors, Open
Systems, Biological Systems. LNCS, vol. 7000. Springer (2011)

15. Rebeca Language Home Page. http://www.rebeca-lang.org
16. Ren, S., Agha, G.: RTsynchronizer: Language support for real-time specifications

in distributed systems. In: Proc. LCT-RTS’95. ACM (1995)
17. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of

reactive systems using Rebeca. Fundam. Inform. 63(4), 385–410 (2004)

242

A Strand Space Approach to Provable Anonymity

Yongjian Li1,3 and Jun Pang2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences

2 Faculty of Science, Technology and Communication, University of Luxembourg
3 College of Information Engineering, Capital Normal University, Beijing, China

Abstract. We formalize in the strand space theory the notion of prov-
able anonymity. Bundle in a strand space is used to formalize a session
of a protocol. Behaviors of an observer can then be formalized as ex-
tensions of a bundle. Reinterpretation function can be naturally derived
from the mapping from one message term of an edge of a bundle in a
strand space to that in another strand space. We formally define ob-
servational equivalence on bundles and use it to formalise anonymity
properties. The novelty of our theory lies in the observational model and
the construction of reinterpretation functions in the strand space theory.
We build our theory in Isabelle/HOL to achieve a mechanical framework
for the analysis of anonymity protocols.

1 Introduction

Nowadays, people are getting used to carry out their daily activities through
networked distributed systems, e.g., online social networks, location-based ap-
plication, providing electronic services to users. In these systems, people become
more and more concerned about their privacy and how their personal informa-
tion have been used. Anonymity is one of the desired properties of such systems,
referring to the ability of a user to own some data or take some actions without
being tracked down. For example, a user wants to keep anonymous when visiting
a particular website or posting a message on a public bulletin board.

Due to its subtle nature, anonymity has been the subject of many research
paper. For instance, the proposed definitions aim to capture different aspects
of anonymity (either possibilistic [1–5] or probabilistic [6–11]). Formal verifica-
tion of anonymity has been applied to a number of application domains, in-
cluding electronic voting [12, 13], electronic cash protocols [14], file sharing [15,
16] and electronic healthcare [17]. However, automatic approaches to the for-
mal verification of anonymity have mostly focused on the model checking ap-
proach on systems with fixed configurations [1, 6, 4, 9], while theorem proving
seems to be a more suitable approach when dealing with systems of infinite state
spaces [18]. In this paper, we extend our previous effort on formalising provable
anonymity in a powerful general-purpose theorem prover, Isabelle/HOL [19], to
semi-automatically verify anonymity properties.

243

In the epistemic framework of provable anonymity [3], the notion of obser-
vational equivalence of traces plays an important role. Essentially, two traces
are considered equivalent if an intruder cannot distinguish them. The distin-
guishing ability of the intruder is formalized as the ability to distinguish two
messages, which is in turn based on message structures and relations between
random looking messages. The notion of reinterpretation function is central in
the provable anonymity framework – proving two traces equivalent essentially is
boiled down to prove the existence of a reinterpretation function. Our formaliza-
tion [20] of provable anonymity in Isabelle/HOL relies on inductive definitions
of message distinguishability and observational equivalence on traces observed
by the intruder. This makes our theory differ from its original proposal.

Our main contribution of this paper is twofold: a proposal of formalizing
provable anonymity in the strand space theory [21–23] and its implementation
in a theorem prover. We briefly discuss the novelties of our work below:

– We define an observational model of a passive intruder, meaning that the
intruder does not actively modify the messages or inject new messages. The
intruder only analyzes or synthesizes new messages to tell the difference be-
tween his observation on sessions. These analyzing and synthesizing actions
are naturally represented by extensions of a bundle by adding separation
and decryption (or concatenation and encryption) actions.

– We propose a notion of reinterpretation mapping, which can be naturally
derived from the mapping from one message term of an edge of a bundle in
a strand space to that in another strand space. Intuitively, a reinterpretation
mapping requires that the relation, composed of the corresponding message
pairs, should be single valued. Furthermore, such a reinterpretation mapping
should remain valid after applying the analyzing and synthesizing extension
operations of a bundle. Combining the concepts of reinterpretation mapping
with that of extensions of a bundle, we propose an (adapted) definition of
observational equivalence between two sessions, which are represented by a
bundle in two strand spaces. Thus in the framework, we naturally incorporate
the concept of reinterpretation function which is extensively used in [3].

– We proceed to formalize anonymity properties, i.e., sender anonymity and
unlinkability, in an epistemic framework as in [3]. We then define the se-
mantics of an anonymity protocol, e.g., Onion Routing [24, 25], in the strand
space theory, and formally prove that the protocol realizes sender anonymity
and unlinkability.

– We build our theory in Isabelle/HOL [19] to have a mechanical framework
for the analysis of anonymity protocols. We illustrate the feasibility of the
mechanical framework through the case study on Onion Routing.

In this paper, we assume readers have some knowledge with Isabelle/HOL
syntax and present our formalization directly without elaborated explanation.
Notably, a function in Isabelle/HOL syntax is usually defined in a curried form
instead of a tuple form, that is, we often use the notation f x y to stand for
f(x, y). We also use the notation [[A1;A2; ...;An]] =⇒ B to mean that with
assumptions A1, . . . , An, we can derive a conclusion B.

244

2 Preliminaries

The basic notations and terminologies are mainly taken from [23].

2.1 Messages

The set of messages is defined using the BNF notation:

h ::= Agent A | Nonce N | Key K | MPair h1 h2 | Crypt K h

where A is an element from a set of agents, N from a set of nonces, and K from
a set of keys. Here we use K−1 to denote the inverse key of K. MPair h1 h2 is
called a composed message. Crypt K h represents the encryption of message h
with K. We use the free encryption assumption, where Crypt K h = Crypt K ′ h′

if and only if K = K ′ and h = h′. The set of all messages is denoted by Messages.
Terms of the form Agent A, Nonce N , or Key K are said to be atomic. The set
of all atomic messages is denoted by Atoms. A message h is a text message if
h 6= Key K for any K. The set of all atomic text messages is denoted by T.

In an asymmetric-key protocol model, an agent A has a public key pubK A,
which is known to all agents, and a private key priK A. pubK A is the inverse
key of priK A ((priK A)−1 = pubK A), and vice versa. In a symmetric-key model,
each agent A has a symmetric key shrK A. The inverse key of shrK A is itself
((shrK A)−1 = shrK A). We also assume that (1) asymmetric keys and symme-
try keys are disjoint; (2) the functions shrK, pubK and priK are injective, e.g.,
if shrK A = shrK A′ then A = A′. The public key, private key, and shared key
of an agent are long-term because the agent holds them forever. In contrast,
some keys are created and used only in a session by some agents, and these
keys are short-term. In the following, we abbreviate Crypt K h as {|h|}K , and
MPair h1 . . .MPair hn−1 hn as {|h1, . . . , hn−1, hn|}. Such abbreviations are sup-
ported in Isabelle by syntax translation [19]. In order to reduce the number of
{| or |} for readability, we abbreviate Crypt K (MPair h1 . . .MPair hn−1 hn) as
{|h1, . . . , hn−1, hn|}K in this paper.

2.2 Strands and Strand Space

Actions. The set of actions that agents can take during an execution of a
protocol include send and receive actions. We denote send and receive actions
by a set of two signs Sign = {+,−}, respectively.
Events. An event is a pair (σ, t), where σ ∈ Sign and t ∈ Messages.
Strands and strand spaces. A protocol defines a sequence of events for each
agent’s role. A strand represents a sequence of an agent’s actions in a particular
protocol run, and is an instance of a role. A strand space is a mapping from a
strand set Σ to a trace SP : Σ ⇒ (Sign×Messages) list.

– A node is a pair (s, i), with s ∈ Σ and 0 ≤ i < length (SP s). We use
n ∈ strand s to denote that a node n = (s, i) belongs to the strand s. The
set of all nodes in SP is denoted as Domain SP . Namely, Domain SP=
{(s, i).s ∈ Σ ∧ i < length (SP s)}.

245

– If n = (s, i) and (SP s)!i = (σ, g), where (SP s)!i means the i-th element in
the strand s. Then we define strand SP n, index SP n, term SP n and sign n
to be the strand, index, term and sign of the node n respectively, namely
strand SP n = s, index SP n = i, term n SP = g and sign n = σ. A node is
positive if it has sign +, and negative if it has sign −.

– If n, n′ ∈ Domain SP , the relation n⇒SP n′ holds between nodes n and n′

if n = (s, i) and n′ = (s, i+1). This represents event occurring on n followed
by that occurring on n′.

– If n, n′ ∈ Domain SP , the relation n →SP n′ holds for nodes n and n′ if
strand SP n 6= strand SP n′, term SP n = term SP n′, sign SP n = +
and sign SP n′ = −. This represents that n sends a message and n′ receives
the message. Note that we place an additional restriction on the relation →
than that in [21, 22], we require strand SP n 6= strand SP n′, i.e., n and n′

are in different strands, which means that actions of sending or receiving a
message can only occur between different strands.

– A term g originates in a strand space from a node n ∈ Domain SP iff
sign SP n = + and g < term SP n, and whenever n′ precedes n on the same
strand, g 6< term SP n′. We write it originate SP g n.

– A term g uniquely originates in a strand space from node n iff g originates
on a unique node n. Nonces and other freshly generated terms are usually
uniquely originated. We write it uniqOrig SP g n.

Bundles. A bundle b = (Nb, Eb) in a strand space SP is a finite subgraph of
the graph (Domain SP, (→SP ∪ ⇒SP)), representing a protocol execution under
some configuration. Nb is the set of nodes, and Eb is the set of the edges incident
with the nodes in Nb, and the following properties hold:

– b is an acyclic finite graph;
– If the sign of a node n is −, and n ∈ Nb, then there is a unique positive node
n′ such that n′ ∈ Nb, n

′ →SP n and (n′, n) ∈ Eb;
– If n′ ⇒SP n and n ∈ b, then n′ ∈ Nb and (n′, n) ∈ Eb.

The set of all the bundles in a strand space SP is denoted as bundles SP .
Causal precedence. Let b be a graph, we define m ≺b n for (m,n) ∈ E+

b , and
m �b n for (m,n) ∈ E∗

b . ≺b and �b represent causal precedence between nodes.
From the definition of a bundle b in a strand space SP , we can derive that

it is a casually well-founded graph [21, 22].

Lemma 1. For a bundle b in a strand space SP , b is casually well-founded
graph, and every non-empty subset of the nodes in it has ≺b-minimal members.

2.3 Intruder model

We discuss anonymity properties based on observations of the intruder. The
Dolev-Yao intruder model [26] is considered standard in the field of formal sym-
bolic analysis of security protocols – all messages sent on the network are read by
the intruder; all received messages on the network are created or forwarded by

246

the intruder; the intruder can also remove messages from the network. However,
in the analysis of anonymity protocols, often a weaker attacker model is assumed
– the intruder is passive in the sense that he observes all network traffic, but
does not actively modify the messages or inject new messages – the intruder
gets a message issued by an agent from the network, then stores it for traffic
analysing, and forwards it directly to its intended destination. In the strand
space model, the above behavior is typically modelled by a Tee strand. Fur-
thermore, the copied messages are only used internally for checking observation
equivalence between protocol sessions.

In the study of the anonymity, we are more interested in the observational
equivalence between sessions. A session is modeled by a bundle in a strand space.
Observational equivalence between two session bundles is modelled by comparing
the similarity between bundles which are extended from the above two bundles
by analyzing and synthesizing actions. The observational equivalence holds if a
one-to-one mapping always holds between the corresponding extended bundles.

2.4 Protocol Modeling using Strands

A protocol usually contains several roles, such as initiators, responders and
servers. The sequence of actions of each regular agent acting some role in a
protocol session is pre-defined by the protocol and represented as a parameter-
ized strand. Parameters usually include agent names and nonces. Informally, we
denote a parameter strand acting some role by role[parameter list]. The strands
of the legitimate agents are referred to as regular strands.

A bundle can also contain penetrator strands. We explain them in more
details in the next section. We now use the Onion Routing protocol [24, 25]
(see Figure 1) as an example to illustrate the modelling strategy using strands.
In this figure, we abbreviate Agent A as A, Nonce N as N , and pubK A as
PKA. This figure uses the case when the threshold k of the router is 2, i.e.,
when the router has received two messages, then it turns into the status of
forwarding messages after peeling the received messages. There are four roles in
this protocol: OnionInit1, OnionInit2, OnionRouter and OnionRecv. The strands
of these roles are defined below:

– OnionInit1 SP s A M Y N ′ N , if the agent acting the role is A and the trace
of s in the strand space SP is [(+, {| N ′, Y, {| N |}pubK Y |}pubK M)].

– OnionInit2 SP s A M N , if the agent acting the role is A and the trace of s
in the strand space SP is [(+, {|N |}pubK M)].

– OnionRouter SP s M k, if the agent acting the role is M and the trace of s
in the strand space SP satisfies:
(∀ i.0 ≤ i < k −→ ((∃ N ′ N Y.term SP (s, i) = {| N ′, Y, {| N |}pubK Y |}pubK M)
∨ (∃ N.term SP (s, i) = {|N |}pubK M))) ∧
(∀i.k ≤ i < length (SP s) −→ (∃ N N ′ Y j.(0 < j < k∧ term SP (s, j) =
{| N ′, Y, {| N |}pubK Y |}pubK M ∧term SP (s, i) = {|N |}pubK Y))).

– OnionRecv SP s Y N , if the trace of s in the strand space SP is [(−, {|N |}pubK Y)].

247

A

B

M

Y0

Y1

Fig. 1. Onion routing with k = 2.

2.5 Penetrator

The symbol bad denotes the set of all penetrators. If an agent is not in the set bad,
then it is regular. The strands of the penetrators are referred to as penetrator
strands. If a strand is not a penetrator one, it is referred to as a regular strand.
We say a node is regular if it is at a regular strand.

There is a set of messages known to all penetrators initially, denoted as initKP,
containing agent names, public keys of all agents, private keys of all penetrators,
and symmetric keys initially shared between the penetrators and the server.

In the classic strand space theory, a penetrator can intercept messages and
generate messages that are computable from its initial knowledge and the mes-
sages it intercepts. These actions are modeled by a set of penetrator strands,
and they represent atomic deductions. More complex deduction actions can be
formed by connecting several penetrator strands together.

Definition 1. A penetrator’ trace relative to initKP is one of the following,
where initKP is the initial knowledge of penetrator:

– text message - M a: [(+, a)], where a ∈ T and a ∈ initKP.
– issuing known key - K K ′ : [(+,Key K ′)], where Key K ′ ∈ initKP.
– concatenation - C g h : [(−, g), (−, h), (+, {|g, h|})].
– separation - S g h: [(−, {|g, h|}), (+, g), (+, h)].
– encryption - E h K: [(−,Key K), (−, h), (+, {|h|}K)].
– decryption - D h K: [(−,Key K−1), (−, {|h|}K), (+, h)].
– Flush - F g: [(−, g)].
– Tee - T g: [(−, g) , (+, g) , (+, g)].

Roughly speaking, penetrator strands can represent two kinds of actions:
analyzing messages (a combination of K and D strands, or just a separation
strand); synthesizing messages (a combination of K and E strands, or just a
concatenation strand). Tee strand is just for copying a message.

A bundle can be extended by adding more penetrator actions to a new bundle.
The set of extended bundles of a bundle b in a strand space SP is inductively

248

defined in Isabelle/HOL below. Intuitively, a bundle in a strand space is a formal
representation of a protocol session. If a bundle b′ ∈ extendByAnalz SP b (or
b′ ∈ extendBySynth SP b), then b′ contains the same behaviors of regular agents
as those in session b. However, b′ contains more information which is revealed
by the penetrator’s analyzing (or synthesizing) actions.

In our framework, in order to check the observational equivalence between
two bundles, we not only need to compare the correspondence of messages in
two sessions, but also need to check the the correspondence of messages in two
sessions which are extended from the original two sessions.

inductive set extendByAnalz:: strand space ⇒ graph ⇒ graph set

for SP::strand space and b::graph where

itSelf: b ∈ bundles SP =⇒ b ∈ extendByAnalz SP b;

| Add Decrypt: [[b’ ∈ extendByAnalz SP b;

Is K strand SP ks; (ks,0) /∈ (nodes b’);

Is D strand SP s; (s,0) /∈ (nodes b’);

(s,1) /∈ (nodes b’); (s,2) /∈ (nodes b’);

(ks,0) → SP (s,0); n ∈ nodes b’; n → SP (s,1)]]
=⇒ extendGraphByAdd1 (extendGraphByAdd2 b’ ks)

s (ks,0) n ∈ extendByAnalz SP b

| Add SepOrTee: [[b’ ∈ extendByAnalz SP b;

Is Sep strand SP s ∨ Is Tee strand SP s;

(node sign SP n) = +; n ∈ (nodes b’);

n → SP (s,0); (s,0) /∈ (nodes b’);

(s,1) /∈ (nodes b’); (s,2) /∈ (nodes b’)]]
=⇒ extendGraphByAdd3 b’ s n ∈ extendByAnalz SP b

inductive set extendBySynth:: strand space ⇒ graph ⇒ graph set

for SP::strand space and b::graph where

itSelf: b ∈ bundles SP =⇒ b ∈ extendBySynth SP b

| Add Encrypt: [[b’ ∈ extendBySynth SP b;

Is K strand SP ks; (ks,0) /∈ (nodes b’);

Is E strand SP s; (s,0) /∈ (nodes b’);

(s,1) /∈ (nodes b’);(s,2) /∈ (nodes b’);

(ks,0) → SP (s,0); n ∈ nodes b’; n → SP (s,1)]]
=⇒ extendGraphByAdd1 (extendGraphByAdd2 b’ ks)

s (ks,0) n ∈ extendBySynth SP b

| Add Cat: [[b’ ∈ extendBySynth SP b;

Is Cat strand SP s; (s,0) /∈ (nodes b’);

(s,1) /∈ (nodes b’);(s,2) /∈ (nodes b’);

n ∈ nodes b’; n → SP (s,0); n’ ∈ nodes b’;

n’ → SP (s,1); n 6= n’

]] =⇒ extendGraphByAdd1 b’ s (ks,0) n ∈ extendBySynth SP b

| Add Tee: [[b’ ∈ extendBySynth SP b;

Is Tee strand SP s; (node sign SP n) = +;

n ∈ (nodes b’); n → SP (s,0);

(s,0) /∈ (nodes b’); (s,1) /∈ (nodes b’);

(s,2) /∈ (nodes b’)]] =⇒ extendGraphByAdd3 b’ s n ∈ extendBySynth SP b

249

3 Message Reinterpretation and Observational
Equivalence on Bundles

We give a definition of message mapping from terms of a node set in a strand
space to those of nodes in another strand space as follows:

mapping:: strand space ⇒ strand space ⇒ (node set) ⇒ (msgPair set)

where mapping SP SP’ NodeSet

≡ {p. ∃n. n∈ NodeSet ∧ p= (term SP n, term SP’ n)}

Then we can naturally derive a definition from messages of a node set of
a bundle in a strand space to those in another strand space. A session which
is modeled by a bundle b in a strand space SP , is said to be reinterpreted to
another which is modeled by b in another strand space SP ′, if the following
conditions hold:

– Let r = mapping SP SP ′ (nodes b), single valued r guarantees that an agent
cannot reinterpret any message differently.

– The casual relation of b in strand space SP is the same as that of b in SP ′.
– For a message pair (m,m′) ∈ r, ifm is an atomic message, thenm = m′. This

means that an agent can uniquely identify a plain-text message he observes.
An agent can only reinterpret the encrypted messages.

The corresponding formalization of Reinterp in Isabelle/HOL is given below.

Reinterp::graph ⇒ strand space ⇒ strand space ⇒ bool where

Reinterp b SP SP’ ≡
let r= mapping SP SP’ (nodes b) in

single valued r ∧
(∀ n1 n2. (n1 → SP n2) −→ (n1 → SP’ n2)) ∧
(∀ n1 n2. (n1 ⇒ SP n2) −→ (n1 ⇒ SP’ n2)) ∧
(∀ n. n ∈ nodes b

−→ ofAgent SP (strand n)= ofAgent SP’ (strand n)) ∧
(∀ m m’. Is atom m −→ (m,m’) ∈ r −→ m = m’)

Next lemma says that b is also a bundle in SP ′ if b is a bundle in SP and
Reinterp b SP SP ′.

Lemma 2. [[Reinterp b SP SP ′; b ∈ bundles SP]]=⇒ b ∈ bundles SP ′

With the concepts of reinterpretation and the extensions of bundles, we can
formalize the definition of observational equivalence between sessions as follows:

obsEquiv::graph ⇒ strand space ⇒ strand space ⇒ bool where

obsEquiv b SP SP’ ≡
∀ b’ b’’. b’ ∈ (extendByAnalz SP b) −→
b’’ ∈ (extendBySynth SP b’)−→
(b’ ∈ extendByAnalz SP’ b ∧
b’’ ∈ extendBySynth SP’ b’ ∧ Reinterp b’ SP SP’)

250

This definition obsEquiv means that for any extension b′ of the bundle b,
the reinterpretation relation will be kept between the two sessions which are
modelled by b′ in strand space SP and SP ′ respectively.

Remark 1. The intuition behind the above definition is that messages in two
sessions look the same to an agent if they are the same for the messages the
agent understands and if a message in one sequence looks like a random bit-
string to the agent, then the corresponding message in the other sequence also
looks like a random bit-string. In detail,

1. For a plain-text, if the agent observes it in an action of a session, then he
should observe the exact same message in the corresponding action of the
other session.

2. A message looks like a random bit-string if the decryption key is not pos-
sessed by the agent. Then the corresponding message should also be like a
random bit-string, which means that it is also a message encrypted by a key
whose inverse key is not possessed by the observer.

3. The reinterpretation should be preserved by the synthesizing and analyz-
ing operations on the observed messages. In the strand space theory, these
operations are modelled by the penetrator strands, thus the preservation
is checked by comparing the corresponding messages mapping from an ex-
tended session to another extended session which are extended by the same
similar penetrator strand.

In the work of Garcia et al. [3], a reinterpretation function between two mes-
sage sequences is used as a underlining concept. In our work, the single-valued
requirement of the message mapping between two bundles gives a sufficient con-
dition for the existence of a reinterpretation function. Moreover, the bundle
extensions give a mechanical way to derive the reinterpretation function.

4 Anonymity Properties

Using the observational equivalence relations over a set of possible observation
equivalent bundles, we can formally introduce epistemic operators [3] as follows:

diamond :: graph ⇒ strand space set⇒ strand space

⇒ assertONBundle ⇒ bool where

diamond b SPS SP Assert ≡ ∃ SP’. SP’ ∈ SPS

∧ ((obsEquiv b SP SP’) ∧ Assert b SP’)

box :: graph ⇒ strand space set ⇒ strand space

⇒ assertONBundle ⇒ bool where

box b SPS SP Assert ≡
∀ SP’ ∈ SPS. (obsEquiv b SP SP’) −→ (Assert b SP’)

Intuitively, b |= � bs ϕ means that for any bundle b′ in bs, if b′ is obser-
vationally equivalent to b, then b′ satisfies the assertion ϕ. On the other hand,

251

b |= 3 trs ϕ means that there is a bundle b′ in trs, b′ is observationally equiva-
lent to b and b′ satisfies the assertion ϕ. Now we can formulate some information
hiding properties in our epistemic language. We use the standard notion of an
anonymity set: it is a collection of agents among which a given agent is not
identifiable. The larger this set is, the more anonymous an agent is.

Suppose that b is a bundle of a protocol in which a message m is originated
by some agent. We say that b provides sender anonymity w.r.t. the anonymity
set AS and a set of possible runs if it satisfies:

origInBundle::agent ⇒ msg ⇒ graph ⇒ strand space ⇒ bool where

origInBundle A g b SP ≡
∃ n. n ∈ nodes b ∧ originate SP g n

senderAnonymity::agent set ⇒ msg ⇒ graph

⇒ strand space set⇒ strand space ⇒ bool where

senderAnonymity AS g b SPS SP ≡
(∀ X. X:AS −→ diamond b SPS SP (origInBundle X g))

Here, AS is the set of agents who are under consideration, and SPS is the set
of all the strand spaces where b represents a protocol session. Intuitively, this
definition means that each agent in AS can originate g in a session which is
represented by b in SP . Therefore, this means that B cannot be sure of anyone
who originates this message in the session.

5 A Case Study: Onion Routing

Onion Routing [24, 25] provides both sender and receiver anonymity for com-
munication over the Internet and servers as the basis of the Tor network [27].
Its main idea is based on Chaum’s mix cascades [28] that messages in Onion
Routing have a layered encryption (thus called onions) and travel from source
to destination via a sequence of proxies (called onion routers). Each onion router
can decrypt (or peel) one layer of a received message and forward the remainder
to the next onion router. To disguise the relations between incoming and outgo-
ing messages, an onion router collect incoming messages until it has received k
messages, permutes the messages and sends in batch to their intended receivers.

5.1 Modeling Onion Routing

We model a simplified version of Onion Routing with only one onion router as
done in [3]. We assume a set of users AS and one router M , with M /∈ AS. We
also assume that each agent can send a message before the router M launches a
batch of forwarding process, and the router does not accept any message when
it is forwarding. We define its initiator and receiver and router strands. For
instance, we define the two kinds of an initiator strands as follows:

252

is initiator1::strand space ⇒ sigma ⇒ agent ⇒ agent ⇒ nat

⇒ nat ⇒ bool where

is initiator1 SP s M Y N0 N ≡
(SP s)=[(+, (Crypt (pubEK M) {|(Nonce N0),(Agent Y),

Crypt (pubEK Y) (Nonce N)|}))]
∧uniqOrig (Nonce N) (s,0)

∧uniqOrig (Nonce N0) (s,0)

is initiator2::strand space ⇒ sigma ⇒ agent ⇒ nat ⇒ bool where

is initiator2 SP s M N ≡
(SP s)=[(+, Crypt (pubEK M) (Nonce N))]

∧uniqOrig (Nonce N) (s,0)

Next we define the strands in a strand space of onion protocol to be the union
of the above kinds strands and penetrator strands.

onionStrandSpec:: agent ⇒ strand space ⇒ bool where

onionStrandSpec M SP≡
∀ s. (Is penetrator strand SP s ∨
(∃ Y N0 N. is initiator1 SP s M Y N0 N) ∨
(∃ N. is initiator2 SP s M N) ∨
(∃ k. is router SP s M k ∧ (ofAgent SP s=M)) ∨
(∃ Y N. is recv SP s Y N)

onionStrandSpaces::agent ⇒ strand space set where

onionStrandSpaces M≡={SP. onionStrandSpec M SP}

5.2 An overview of our proof strategy

In the following sections, we will formalize and prove the anonymity properties
of Onion Routing. Due to the complexity of the epistemic operators in property
definitions, the proof is rather envolved. We give an overview of our formalization
and the main proof steps.

We will formalize the sender anonymity of Onion Routing in the view of a
Spy for a session w.r.t. a set of honest agents and all possible equivalent bun-
dles. Consider a session, which is modelled by a bundle b in a strand space SP ,
according to the definitions of epistemic operators, which are used in the defini-
tion of sender anonymity, we need to construct another strand space SP ′ which
satisfies the following two conditions:

(1) SP ′ is still an Onion routing strand space.

(2) b in strand space SP is observationally equivalent to b in SP ′. That is
to say, obsEquiv b SP SP ′. In order to show this, by the definition of
obsEquiv, we need to prove that for any bundle b′ ∈ extendByAnalz SP b,
b′′ ∈ extendBySynth SP ′ b′ and Reinterp b′′ SP SP ′.

Whether two sessions are observationally equivalent for a protocol depends on
the knowledge of the intruder after his observation of the two sessions. Therefore,

253

we need to discuss some secrecy upon on the intruder’s knowledge. We introduce
a new predicate:

nonLeakMsg g M ≡ ∀ B N0 N.(g = (Crypt (pubK M)
{|Nonce N0,Agent B,Crypt (pubK B)(Nonce N)|})) −→ (B /∈ bad ∨ N0 6= N)

Formally, nonLeakMsg m M specifies that if a message m has the form of
Crypt (pubK M) {|Nonce N0,Agent B,Crypt (pubK B)(Nonce N)|}, then either
B /∈ bad or N0 6= N . This specifies a non-leakage condition of nonce part N0

in a message of the aforementioned form which is sent to the router even if its
nonce part N is forwarded to the intruder.

5.3 Message swapping

In this section, we present a method for the construction of an observationally
equivalent session.

The swap function. We define a function swapMsg g h msg, which swaps
g with h if either g or h occurs in msg. Then we extend the swap operation
naturally to events (applying to the message field of an event) and to strand
space (applying to the message field of every event in a strand).

primrec swapMsg::msg ⇒ msg ⇒ msg ⇒ msg where

swapMsg g h (Nonce na) =

(if (g=(Nonce na)) then h else if (h=(Nonce na))

then g else (Nonce na)) |

swapMsg g h (Agent A) =

(if (g=(Agent A)) then h else if (h=(Agent A))

then g else (Agent A)) |

swapMsg g h (Crypt K m) =

(if (g= (Crypt K m)) then h else if (h= (Crypt K m))

then g else (Crypt K (swapMsg g h m)))

swapSignMsg::msg ⇒ msg ⇒ (Sign × msg) ⇒ (Sign × msg) where

swapSignMsg g h sMsg ≡ (fst sMsg, swapMsg g h (snd sMsg))

definition swapStrandSpace::msg ⇒ msg ⇒ strand space ⇒ strand space

where swapStrandSpace g h SP ≡(%s. if ((Is D strand SP s)

∧ (node term SP (s,1)=g ∨ node term SP (s,1)=h))

then [(-,node term SP (s,0)),

(-,swapMsg g h (node term SP (s,1))),

(+,plainTxt (swapMsg g h (node term SP (s,1))))]

else if ((Is E strand SP s)

∧ (node term SP (s,2)=g ∨ node term SP (s,2)=h))

then [(-,node term SP (s,0)),

(-,plainTxt (swapMsg g h (node term SP (s,2)))),

(+,swapMsg g h (node term SP (s,2)))]

else (map (swapSignMsg g h) (SP s)))

254

Here plainTxt g is a function which returns the plain text of g which is of
an encrypted form. E.g., plainTxt {|Nonce N |}pubK Y = Nonce N . We emphasize
that g and h are two messages of encrypted form when we use the definition
swapStrandSpace g h SP in this work.

In strand space SP , if message g(h) is uniquely originated in node n(n′), g(h)
is not a subterm of h(g), n(n′) is in Domain SP , then g(h) is uniquely originated
in node n′(n). Here we also assume that g(h) is an encrypted message.

Lemma 3. [[uniqOrig SP g n; ¬g < h; ¬h < g; uniqOrig SP h n′; ofEncryptForm g;
ofEncryptForm h; n ∈ Domain SP ; n′ ∈ Domain SP]]
=⇒ uniqOrig (swapStrandSpace g h SP) g n′

swap g h SP is an Onion Strand Space. This is stated as a lemma below.

Lemma 4. [[SP ∈ onionStrandSpaces M ; term SP (s, 0) = g; term SP (s′, 0) =
h; is initiator M SP s g; is initiator M SP s′ h]]
=⇒ (swapStrandSpace g h SP) ∈ onionStrandSpaces,
where is initiator M SP s g ≡ (∃Y N0 N. is initiator1 M SP s Y N0 N ∧ g =
Crypt (pubK M){|Nonce N0,Agent B,Crypt (pubK B) (Nonce N)|})∨
(∃N. is initiator2 SP s M N ∧ g = Crypt (pubEK M) (Nonce N).

Alignment properties. Now we first define a predicate, initBundle SP b ≡
b ∈ bundles SP ∧ (∀s.(∃i.(s, i) ∈ nodes b) −→ is regular strand SP s∨Tee SP s).
We can show that the relation, r = mapping SP SP ′ nodes b, which is composed
of the corresponding message pairs of two sessions, which are modelled by b in
SP and b in swapStrandSpace g h SP respectively, is single valued. Here we also
assume that initBundle SP b.

Lemma 5. [[b ∈ bundles SP ; SP ∈ onionStrandSpaces M ; term SP (s, 0) = g;
term SP (s′, 0) = h; is initiatorM SP s g; is initiatorM SP s′ h; initBundle SP b;
SP ′ = swapStrandSpace g h SP ; r = mapping SP SP ′ (nodes b)]]
=⇒ Reinterp b SP SP ′

After applying analyzing operations pairwise on b, we can extend b to b′, let
SP ′ = (swapStrandSpace g h SP), then we also have b′′ ∈ extendsByAnalz b′SP ′

and Reinterp b′′ SP SP ′. After applying synthesizing operations pairwise on the
b′ in Lemma 5, we obtain another bundle b′′, let r = mapping SP SP ′ nodes b′, if
M is not in bad, and both nonLeakMsg g M and nonLeakMsg h M , then we also
have b′′ ∈ extendsBySynth b′(swapStrandSpace g h SP) and Reinterp b′′ SP SP ′.

Observational equivalence between b and swap g h b. Next we show
that b in SP is observationally equivalent to b in swap g h SP if the following
constraints are satisfied: g = {|Nonce n0,Agent Y, {|Nonce n|}pubK Y |}pubK M , g is
sent to the router, and h is also sent to the router M , and both g and h satisfy
the nonLeakMsg conditions.

255

Lemma 6. [[SP ∈ onionStrandSpaces M ; b ∈ bundles SP ; initBundle SP b;
g = Crypt (pubEK M){|(Nonce N0), (Agent Y), (Crypt (pubEK Y) (Nonce N))|};
term SP n = g; n ∈ nodes b; term SP n′ = h; n′ ∈ nodes b; M /∈ bad;
nonLeakMsg g M ; nonLeakMsg h M ; is initiatorM SP (strand n) g; is initiatorM
SP (strand n′) h]] =⇒ obsEquiv b SP (swap g h SP)

5.4 Proving anonymity properties

Let us give two preliminary definitions: the senders in a bundle, and a predicate
nonLeakBundle b M specifying that b is a bundle where each honest agent sends
a message m which satisfies nonLeakMsg m b.

sendersInBundle::strand space ⇒ graph ⇒ agent set

where sendersInBundle SP b ≡
{A.∃ s. ofAgent SP s= A ∧ (s,0) ∈ nodes b

((∃ Y n0 n. is initiator1 SP s M Y n0 n) ∨
(∃ n. is initiator2 SP s M n))}

nonLeakBundle::strand space ⇒ graph⇒ agent⇒bool

where nonLeakBundle SP b M ≡
∀ g n n’. ((n → SP n’) ∧ n’ ∈ nodes b ∧
ofAgent SP (strand n) /∈ bad) −→ nonLeakMsg g M

Message g is forwarded to B by the router M , and is originated by some
honest agent, and the bundle in SP satisfies nonLeakBundle SP b M , then the
honest agent who originates g cannot be observed. Namely, the sender anonymity
holds for the intruder w.r.t. the honest agents who send messages to M in the
session modeled by b. This is summarized by the following theorem.

Theorem 1. [[SP ∈ onionStrandSpacesM ; b ∈ bundles SP ; g = Crypt (pubEK B)
(Nonce N); n ∈ nodes b; sign SP n = − ; regularOrig (Nonce N) b SP ;
term SP n = g; nonLeakBundle SP b M ; M /∈ bad]] =⇒ senderAnonymity
(sendersInBundle SP b− bad) (Nonce N) b (onionStrandSpaces M) SP

6 Conclusion and Future Work

We presented a strand space approach to provable anonymity and formally im-
plemented it in the theorem prover Isabelle/HOL. In order to do this, we ex-
tended the classical strand space theory. We built the concept of a protocol
session based on the notion of “bundle” in a strand space. In the classical strand
space theory, secrecy and authentication are studied by focusing individual ses-
sions. However, two protocol sessions are needed in order to decide observational
equivalence according to the adversary’s knowledge obtained in the two sepa-
rate sessions – in our extended strand space theory, they are represented by a
similar bundle in two different strand spaces. Moreover, an observer needs to
compare corresponding messages to decide the equivalence of two sessions based

256

on his knowledge. In the strand space theory, knowledge deduction actions are
represented by penetrator strands. Therefore, we proposed two kinds of bundle
extensions: analyzing and synthesizing extensions, which improve the deduction
ability of an observer. In the end, we proposed a natural definition on reinter-
pretation relation between two sessions. Essentially, the two compared sessions
should have the same topological relation, and the message mapping of the two
sessions should be single-valued. Combining reinterpretation relation and bundle
extensions, we arrived at the key concept of observational equivalence between
sessions. Based on this, we defined the semantics of anonymity properties in
an epistemic framework and formally proved sender anonymity for the Onion
Routing protocol. In the future, we plan to extend the whole theory to active
intruders in the style of Dolev-Yao [26], and perform more case studies.

Acknowledgments. The first author, Yongjian Li, was supported by a grant
61170073 from the National Natural Science Foundation of China.

References

1. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Proc. 4th European
Symposium on Research in Computer Security. Volume 1146 of LNCS., Springer
(1996) 198–218

2. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: A modular
approach. Journal of Computer Security 12(1) (2004) 3–36

3. Garcia, F.D., Hasuo, I., Pieters, W., van Rossum, P.: Provable anonymity. In: Proc.
3rd Workshop on Formal Methods in Security Engineering, ACM (2005) 63–72

4. Chothia, T., Orzan, S.M., Pang, J., Torabi Dashti, M.: A framework for automat-
ically checking anonymity with µCRL. In: Proc. 2nd Symposium on Trustworthy
Global Computing. Volume 4661 of LNCS., Springer (2007) 301–318

5. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.D.: Analysing unlinkability and
anonymity using the applied pi calculus. In: Proc. 23rd IEEE Computer Security
Foundations Symposium, IEEE CS (2010) 107–121

6. Shmatikov, V.: Probabilistic model checking of an anonymity system. Journal of
Computer Security 12(3/4) (2004) 355–377

7. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent
systems. Journal of Computer Security 13(3) (2005) 483–514

8. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Proc. 16th Conference
on Concurrency Theory. Volume 3653 of LNCS., Springer (2005) 171–185

9. Deng, Y., Palamidessi, C., Pang, J.: Weak probabilistic anonymity. In: Proc. 3rd
Workshop on Security Issues in Concurrency. Volume 180 of ENTCS. (2007) 55–76

10. Chen, X., Pang, J.: Measuring query privacy in location-based services. In: Proc.
2nd ACM Conference on Data and Application Security and Privacy, ACM Press
(2012) 49–60

11. Chen, X., Pang, J.: Protecting query privacy in location-based services. GeoInfor-
matica (2013) To appear.

12. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17(4) (2009) 435–487

13. Jonker, H.L., Mauw, S., Pang, J.: A formal framework for quantifying voter-
controlled privacy. Journal of Algorithms in Cognition, Informatics and Logic
64(2-3) (2009) 89–105

257

14. Luo, L., Cai, X., Pang, J., Deng, Y.: Analyzing an electronic cash protocol us-
ing applied pi-calculus. In: Proc. 5th Conference on Applied Cryptography and
Network Security. Volume 4521 of LNCS., Springer (2007) 87–103

15. Yan, L., Sere, K., Zhou, X., Pang, J.: Towards an integrated architecture for peer-
to-peer and ad hoc overlay network applications. In: Proc. 10th Workshop on
Future Trends in Distributed Computing Systems, IEEE CS (2004) 312–318

16. Chothia, T.: Analysing the mute anonymous file-sharing system using the pi-
calculus. In: Proc. 26th Conference on Formal Methods for Networked and Dis-
tributed Systems. Volume 4229 of LNCS. (2006) 115–130

17. Dong, N., Jonker, H.L., Pang, J.: Formal analysis of privacy in an eHealth protocol.
In: Proc. 17th European Symposium on Research in Computer Security. Volume
7459 of LNCS., Springer (2012) 325–342

18. Kawabe, Y., Mano, K., Sakurada, H., Tsukada, Y.: Theorem-proving anonymity
of infinite state systems. Information Processing Letters 101(1) (2007) 46–51

19. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. LNCS 2283. Springer (2002)

20. Li, Y., Pang, J.: An inductive approach to provable anonymity. In: Proc. 6th
Conference on Availability, Reliability and Security, IEEE CS (2011) 454–459

21. Javier Thayer, F., Herzog, J.C., Guttman, J.D.: Strand spaces: Why is a security
protocol correct? In: Proc. 19th IEEE Symposium on Security and Privacy, IEEE
CS (1998) 96–109

22. Javier Thayer, F., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security
protocols correct. Journal of Computer Security 7(1) (1999) 191–230

23. Li, Y., Pang, J.: An inductive approach to strand spaces. Formal Aspects of
Computing 25(4) (2013) 465–501

24. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Proc. 1st Workshop on Information Hiding. Volume 1774 of LNCS., Springer (1996)
137–150

25. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion
routing. In: Proc. 18th IEEE Symposium on Security and Privacy, IEEE (1997)
44–54

26. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(12) (1983) 198–208

27. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: Proc. 13th USENIX Security Symposium. (2004) 303–320

28. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24(2) (1981) 84–90

258

Creating Visualisations of Formal Models of
Interactive Medical Devices

Judy Bowen, Steve Jones, and Steve Reeves

The University of Waikato,
Hamilton, New Zealand

{jbowen,stevej,stever}@cs.waikato.ac.nz

Abstract. Creating formal models of interactive medical devices, such
as infusion pumps, allows us to perform important checks to ensure that
both the functionality of the device and its interaction possibilities cor-
rectly support requirements. As these are safety-critical devices errors
can be fatal. We often want to be able to demonstrate aspects of be-
haviour from the models to medical practitioners, bio-technicians, device
manufacturers etc. who are not typically familiar with the languages and
notations of our models. The best way to communicate with these peo-
ple is via simulations of the device, however developing such simulations
is time-consuming and can itself be error-prone. In this paper we de-
scribe ongoing work which looks at ways of creating visualisations and
simulations directly from the formal models as a way of addressing this
problem.

Keywords: Formal models, Z, presentation models, safety-critical in-
teractive systems

1 Introduction

Creating formal models of safety-critical interactive systems allows us to verify
the behaviour of systems, ensure that they correctly meet requirements and that
they will behave as expected in all circumstances. Recently we have been using
interactive system modelling techniques to describe interactive medical devices,
such as syringe and infusion pumps. These devices are prolific in medical settings
in both New Zealand and the rest of the world, and there is ongoing work to
ensure their safety, and find better ways of regulating new devices.

Whilst we have been able to use our models in a variety of different ways [3,
4] as a method of communication with practitioners they are not effective. This
is due to the formal notations and tools which support them which do not lend
themselves to being easily understood by those outside of the computer science
domain.

We have therefore become increasingly interested in finding ways of creating
visualisations of the models, and this has also led to work on creating simulations
from the models.

259

2 Adding Visualisations to Formal Models of Interactive Medical Devices

2 Overview of the Models

The models we use to describe the medical devices are presentation models,
Presentation Interaction Models (PIMs) and a formal specification of the sys-
tem functionality written in the Z language [9]. Presentation models and PIMs
were originally developed as a way of formalising design artefacts and user in-
terfaces of interactive systems in general [2] so that when combined with a Z
specification they provide a formal description of the entire system and interac-
tion possibilities.

More recently we have been using these models to describe modal interactive
medical devices and using them to investigate the devices themselves, as well as
to describe safety requirements [4]. A presentation model is used to describe the
interactive components (widgets) of the device and their behaviours in all possi-
ble modes. The PIM is used to describe the navigational possibilities between the
modes of the device (it is typically described as a state transition diagram with
each mode represented by a state and transitions labelled with the behaviours
which lead to the transition) and as such gives meaning to the interactive be-
haviours. A relation is then created between functional behaviours described
in the presentation model and corresponding operations of the Z specification
which provides the formal meaning to these.

The combination of these models, therefore, provides a complete, and formal,
description of the device. This enables us to use them as the basis for a complete
simulation of a device which is accurate with respect to the models.

3 Adding Visualisations to ProB

Fig. 1. Visualisation of some state in ProB

ProB [10] is a model-checking, animation and visualisation tool widely used
for investigating formal models of systems in many languages.

A common and simple sort of state space visualisation can be used to see
how the state changes via a display of a state machine in graph form, but this
simple-minded visualisation (available in ProB) becomes unusable very quickly
because models of real systems tend to contain a large number of states and the
graph gets extremely dense with states and transitions and it is typically not
able to provide clear details for users.

For us, visualisation is a process of presenting the current state of an infusion
pump, for example, to the user by using some images which create a visualisation
that looks somewhat like the display unit of the actual pump.

260

Visualising Medical Device Models 3

ProB has a mode of use (usually called ProZ) which supports Z specifica-
tions, written in the usual LATEX style, and which uses the fuzz type checker for
parsing and checking the inputs. In order to add visualisation to a standard Z
model some work is needed. One more schema, called ProZ settings, has to be
added to any existing Z model, and this schema has to declare and use a visu-
alisation function which ProB expects to see in order to link the current state
observations with the correct graphical elements. For example, this function will
make sure that when the current volume being modelled is 3ml then the names
of the graphical elements that go to make up this picture are output by this
visualisation function. As the state observations change, the values of this vi-
sualisation function change in-step, making sure that the appropriate graphical
elements are always displayed.

While merely animating (i.e. showing the values of the various components
of the state textually) a model in ProZ can be used for investigation, and even
to take a user through the model by seeing state components and their values
and see how these change as operations are used, it still is not ideal for most
users. In Figure 1 we see a visualisation of a state of the model which is designed
to replicate the display of the actual device being modelled. This has achieved
two things: much of the detail in the animation has been abstracted away, which
makes the state easier to comprehend; and the visualisation looks something
like the actual pump display, which makes the modelling more acceptable, and
understandable, to more users.

4 Developing Online Simulations from Models

While the visualisations we can add to ProB are useful as a way of enhancing the
model checking process, there is still a mismatch between this visualisation and
the typical expectations of the user (in this context the “user” is the person we
are communicating with who does not have any expertise in software modelling
or models). The visualisation is a simplified version of the display component only
rather than looking anything like the device itself. Just as device manufacturers
make use of simulations of devices as a training aide (although typically their
behaviour is restricted to a subset of all behaviours 1) our aim is to similarly use
simulations as a communication means. However, as our purpose is to explain
behaviours of models of the system rather than the device itself, we want to
use the models to derive the simulation. In this way we can be sure that the
simulation behaves exactly as the models do (highlighting any problems the
modelling process has identified) whilst at the same time appearing recognisable
to users.

There are two possible scenarios when creating such simulations. If our mod-
els are of a new, unimplemented device (as is the case where the product devel-
opment is model-driven) we can either use design prototypes (which have been
developed during the design process to date) or if such a prototype does not

1 See for example http://www.mckinleymed.co.uk/training/t34/

261

4 Adding Visualisations to Formal Models of Interactive Medical Devices

exist we can create a generic interface with an appearance which is familiar to
users of infusion and syringe pumps. If, however, we are working with models
of existing devices then we will use images of the actual device as the starting
point for the simulation.

A similar approach has been taken by the CHIMed group [5] who have ex-
tended PVSio [6] (the simulation component of the PVS proof system [8]) as
a mechanism to support the rapid prototyping of device UIs. Masci et al. have
developed PVSio-web [7] which is an open source tool. They have used a gen-
eral architecture with the aim of allowing PVSio-web to be used as the basis
for extending other verification tools. One of our goals is to integrate the ProB
visualisations into this tool enabling similar rapid prototyping from our own
specifications.

Our first step towards this has been to investigate the creation of a similar
web-based tool which uses a subset of our models as the input in the manner
described above. We have developed a web-based tool (developed using HTML5
and Javascript) which allows the user to upload an image of an interactive device
and then upload a model to associate with it. The user then selects the widgets
of the device from the image by dragging the mouse to highlight the relevant
area, once the widgets have been defined they can be associated with the widget
descriptions from the model which include the name and behaviours of the widget
in the different modes. Once complete the user can then save the definition and
change from edit mode to simulate mode and interact with the simulation to
experiment with the behaviours defined in the models.

5 Experimental Interfaces on Android Devices

In previous work we experimented with the automatic generation of applications
for the Android platform from the formal models described earlier [1]. We de-
veloped a tool that parses a model and creates a default user interface for the
Android application such that it implements the interactive behaviours defined
in the model. Subsequently we extended this tool so that a developer can refine
the user interface to be generated by defining its layout and configuring the user
interface components that it contains.

Recently we have adapted this work to generate Android-based simulations
of medical devices from their models. These simulations typically run on a touch-
screen tablet computer, and display a high-resolution image of the device with
interactive regions that correspond to the device’s physical controls. User inter-
action with these regions causes the simulation to transition between states as
defined in the models. The visual representation is updated accordingly to, for
example, modify the content of its display screen, turn lights on/off etc.

This approach offers a number of benefits. Changes to the device models,
such as the behaviour of a button, are immediately reflected in the automati-
cally reconfigured simulation. This allows rapid investigation of alternative de-
signs, ensures that the simulation is always consistent with the model, and does
not require any programming by the device developer. The portability of the

262

Visualising Medical Device Models 5

device means that testing of the device’s interaction design can take place with
target users in the target environment. Additionally, the simulation can be in-
strumented to capture user interaction data for analysis. We will shortly address
dynamic modification of the simulated device’s user interface to enable rapid pro-
totyping and immediate integration of user feedback. These changes will then
be propagated to the underlying models so that the two remain consistent.

6 Conclusions and Future Work

In this paper we have given an overview of a project to develop visualisations of,
and simulations from, formal models of interactive medical devices. The three
approaches described here are all part of ongoing work and will continue to be
developed and enhanced in the future. Our aim is to have a suite of tools which
enable us to derive simulations from models on a variety of different platforms
which can then also be used as UI development tools as well as be able to
visualise models as a method of communicating with medical practitioners and
biomedical technicians.

References

1. Bowen, Judy and Hinze, Annika. Supporting Mobile Application Development with
Model-Driven Emulation. Electronic Communications of the EASST, volume 45,
ISSN: 1863-2122, 2011.

2. Bowen, J., Reeves, S. Formal Models for Informal GUI Designs. In proceedings of 1st
International Workshop on Formal Methods for Interactive Systems, Macau SAR
China, 31 October 2006, Electronic Notes in Theoretical Computer Science, col,
183, 57-72, Elsevier, 2006.

3. Bowen, J. and Reeves, S. Modelling User Manuals of Modal Medical Devices and
Learning from the Experience. In proceedings of ACM EICS 2012, 4th International
Conference on Engineering Interactive Systems, Copenhagen, June, 2012.

4. Bowen, J. and Reeves, S. Modelling Safety Properties of Interactive Medical Sys-
tems. In proceedings of ACM EICS 2013, 5th International Conference on Engineer-
ing Interactive Systems, London, June, 2013.

5. Engineering and Physical Sciences Research Council. CHI+MED: Multidisciplinary
computer-human interaction research for the design and safe use of interactive med-
ical devices, EPSRC reference: EP/G059063/1, 2011

6. Muñoz, C. Rapid prototyping in PVS. Technical report NIA Report No. 2003-03,
NASA/CR-2003-212418, National Institute of Aerospace, 2003.

7. Oladimeji, P., Masci, P., Curzon, P., Thimbleby, H. PVSio-web: a tool for rapid
prototyping device user interfaces in PVS, In proceedings of FMIS2013, London,
June, 2013.

8. Owre, S., Rajan, S., Rushby, J., Shankar, N., Srivas, M. PVS: Combining Specifica-
tion, Proof Checking, and Model Checking. In CAV96. LNCS 1102. Springer Berlin
Heidelberg, 1996.

9. ISO/IEC 13568. Information Technology–Z Formal Specification Notation—Syntax,
Type System and Semantics, first edition, Prentice Hall, 2002.

10. http://www.stups.uni-duesseldorf.de/ProB/index.php5/The_ProB_

Animator_and_Model_Checker

263

With an Open Mind: How to Write Good Models

Cyrille Artho1, Koji Hayamizu1, Rudolf Ramler2, and Yoriyuki Yamagata1

1 RISEC, AIST, Amagasaki, Japan
2 Software Competence Center Hagenberg, Hagenberg, Austria

Abstract. Writing effective models for systems and their environment
is a challenge. The task involves both mastering the modeling tool and
its notation, and faithfully translating all requirements and specifications
into a complete model. The former ability can be learned, while the latter
one is a continuous challenge requiring experience and tools supporting
the visualization and understanding of models. This paper describes our
experience with incomplete models, the types of changes that were made
later, and the defects that were found with the improved models.

Keywords: Model-based analysis, model design, model checking, model-
based testing

1 Introduction

Model-based techniques use abstract models to define many possible system
behaviors. In model-based testing, a test model gives rise to many concrete test
cases. In model checking, all possible behaviors of a given model are explored
to check if given properties hold. Both types of analysis have in common that
a model of the environment is needed, which represents possible stimuli to the
system under test (SUT). Analysis of the SUT involves exploring interactions
between the SUT (model) and the environment, and verifying if a set of stated
properties holds for all possible interactions (see Figure 1).

When using testing (run-time verification), tests can be executed against the
implementation of the system. In model checking, a model of the SUT is needed;
that model may be written by an engineer, or a tool may derive the system model
from its implementation. In either case, the environment needs to be modeled
from requirements, which is a largely manual task.

Full system

Environment,
usage, or test

model

System under test
(implementation or

system model)

drives
Properties

?

Fig. 1. Verification of a system in its environment.

264

The resulting model should reflect the requirements and capture all relevant
system behaviors. Creation of a good model is a challenge, both for modeling
the system and maybe even more so for modeling its environment.

If a property is violated by a given execution trace, then the trace is analyzed
to determine whether the model is incorrect or the SUT contains a defect. As
long as such counterexample traces are found, there is an inconsistency between
the stated properties and the possible state space, as determined by the model.
Defect resolution may involve relaxing a property that is too strict, restricting
an environment model that is too general, or fixing a defect in the SUT. No
matter which artifact in the verification process is at fault, property violations
always show that development is not complete yet.

Unfortunately, it is a common fallacy to believe that if a model is analyzed
exhaustively, a system has been “proven correct” if no defects are found by the
analysis. There are many subtle ways in which a model may be too restrictive,
or a stated property too weak, to cover possible defects. This paper describes
our experience with this problem, and suggests steps to be taken to improve the
situation.

To highlight this issue, we label the right arrow in Figure 1 with a question
mark. We think that the common notion of “system models properties” as a
verification goal is a good one. However, the notation is often thought of in the
reverse direction as “properties hold for the system” once verification is complete.
The danger in that notation lies in the fact that without validation of the model,
property verification guarantees little in terms of system correctness.

Good models are those that help to exhibit defects in the system under test.
What are the problems that restrict a model’s defect detection capability?

In this paper, we first describe various projects in which initial models were
insufficient to find certain defects. However, even small changes or additions to
these models uncovered many additional features. We identify factors that nega-
tively influenced the design of the original models, and propose both procedural
as well as technical remedies.

This paper is organized as follows: Section 2 describes related work. Our
experience with software test models is described in Sections 3 and 4, while
Section 5 shows a discrepancy between models and reality in hardware. Section 6
discusses our findings, and Section 7 concludes and outlines future work.

2 Related Work

In hardware and software analysis, properties may be trivially fulfilled, because
not all relevant parts of a system have been analyzed, due to an incomplete
system or environment model.

In hardware analysis, the problem of properties being trivially true has been
well-known for two decades [4,5]. So-called vacuous properties include implica-
tions of type a → b, where the antecedent a is never true. Regardless of the
value of b, such a property holds. However, because the second part of the for-

265

mula becomes irrelevant, this case of an “antecedent failure” is likely not what
the modeler intended [4].

For temporal logics, so-called zeno-timelocks describe cases where parts of a
model would have to execute infinitely fast (being subject to an infinite number
of transitions in a finite amount of time) for a property to hold [8]. Such timelocks
often relate to a problem in the way parts of a system are modeled [9].

More recently, a different case, parts of a property that are unsatisfiable per
se, has been investigated [20]. This property can be used to “debug” a specifica-
tion, i. e., to analyze why a specification does not hold. There is emerging work
in the field of diagnosing model checker specifications using scenarios to analyze
the model [17].

In software testing, modified condition/decision coverage (MC/DC) and sim-
ilar test coverage criteria try to ensure that each part of a complex conditional
statement is actually relevant for the outcome of a test suite [1,26]. For each loca-
tion in the software code where compound conditionals exist, MC/DC demands
that, among other criteria, each condition in a decision is shown to indepen-
dently affect the outcome of the decision [26]. If a condition has no effect on the
outcome of a decision, it is likely incorrect (too weak) or redundant. The appli-
cation of coverage criteria on the model level is emerging work, with only a few
relatively simple coverage criteria such as state, transition, and path coverage,
being commonly used so far [1].

Work investigating how human developers write test sequences has found
that there is a bias towards designing a test case up to a “critical” operation
that is expected to possibly fail, but not beyond [10,18]. In particular, test cases
are often designed to cover possible exceptions, but tend to stop at the first
exception. This bias was confirmed in our case studies for designing models for
network libraries [2,3] and is described in more depth below.

Finally, the problem of model validation is also well known in model-driven
engineering [6]. In that case, the model cannot be verified but only validated;
recent work suggests generating questions about model properties as a form of
sanity check [6].

3 Modeling the Java Network Library with Modbat

Even in widely used commercial software such as the Java platform [15], the
official specification and documentation is written in English and not available
as a fully rigorous formal document. This may give rise to ambiguities. In our
experience, the biggest challenge in using the given specification was that many
details are implicit, making it difficult to create a faithful model that also covers
all relevant behaviors.

3.1 Setting

This section concerns the use of Modbat, a model-based test tool [2], for veri-
fying a custom implementation of the java.nio network application program-
ming interface (API) [15]. This network library allows the use of non-blocking

266

input/output (I/O) operations. Unlike blocking operations, which suspend the
current thread until the full result is obtained, non-blocking variants return a
result immediately; however, the result may be incomplete, requiring that the
operation be retried for completion.

The goal of this project was to test conformance of a custom version of the
java.nio library [3] w. r. t. the official documentation [15]. The custom imple-
mentation of the java.nio library is designed to run on Java PathFinder [25],
which requires a model implementation of code that interacts with the environ-
ment [3]. When using Modbat on this library, the model replaces the environment
and generates calls to the API of the SUT.

Modbat uses an extended finite state machine [23] as its underlying model.
State transitions are labeled with actions that are defined as program code
(functions implemented in Scala [14]). This program code can directly execute
the system under test (in our case, parts of the Java API). In addition to that,
Modbat also supports exception handling, by allowing a declaration of possible
exceptions that may result by (failed) actions. Finally, Modbat supports non-
blocking I/O by allowing the specification of alternative target states to cover
both the successful and the failed (incomplete) outcome of non-blocking I/O.

open configureBlocking

bound

bind

err

accept:
NotYetBoundException

closed

close
non-bl. accept

(failed)

connected

bl. accept
non-bl. accept
(successful)

closeclose

 read

accept:
ClosedChannelException

 close

Fig. 2. Initial model for java.nio server API.

We have modeled the usage of the key classes ServerSocketChannel and
SocketChannel with Modbat (see Figure 2 for the server case). Both APIs have
in common that a channel object first needs to be created by calling open.
Our models take the resulting state as the initial state. In the server case, the
created object represents the ability to accept incoming connections; the object

267

therefore also needs to be bound to a port and IP address before a connection
can be accepted. In the client case, the connection can be established directly by
supplying the IP address and port of the server as a function argument. However,
the client API is slightly more complex in general in the sense that finishing a
pending connection (after an unsuccessful non-blocking connect call) attempt
requires a different function than the initial attempt, viz., finishConnect. There
are also more possible exceptions [15].

In the figure, dashed transitions correspond to the successful (completed)
case of a non-blocking operation that would otherwise have to be repeated (non-
blocking accept). Red, accordingly labeled edges correspond to exceptions re-
sulting from actions that are not allowed in a given state. In these cases, the edge
label denotes the exception type. Some nodes have a self-transition that denotes a
possible switch from blocking to non-blocking mode using configureBlocking.
A self-loop may also denote a retry of a previously failed non-blocking action; in
the successful case, the dashed alternative transition is taken to the connected
state. Finally, there is a self-transition in the connected state that reads from
the newly connected channel before the connection is closed again.

3.2 Weaknesses of the initial model

We first executed the test cases generated from the models against the standard
Java implementation, using it as a reference implementation. This ensures that
no false positives are reported by the test model when it is used as an oracle
against the reference implementation. We then used the given test model in a
second test run, against our network model for JPF. Using this approach, we
found a complex defect that was not covered with manually written tests [3].
However, several defects were not discovered by this initial model.

First, the initial model did not cover all possibilities of disallowed operations
in the closed state. In that state, only close is allowed, as its semantics is defined
to be idempotent in Java [15]. All other operations are expected to throw a
ClosedChannelException. This part of the semantics is trivial to model, because
most operations behave identically. However, the initial model missed several
possible alternatives, because they have to be enumerated by the modeler. As it
turned out, the implementation did not track its internal state correctly in all
cases, and the wrong type of exception was thrown for a particular sequence of
commands that included close and another operation after close. The challenge
is that the model has to cover a large number of possible transitions, and it is
easy to overlook some.

Second, it was difficult to express a property related to an end-of-file return
code correctly [2]. An older version of the model was using a precondition to avoid
reading from a stream where an end-of-file has been received. This meant that
sequences that attempt to read beyond the end of a file were never generated,
missing a defect in that case. A newer model included such sequences but its
property to be checked was a bit too lenient. The reason for this was that it is not
trivial to account for all possibilities of reading data in non-blocking mode. Even
for an input of very limited length (2), the state space of all possibly incomplete

268

connected

read() == 0

read_1
read() == 1

read() == 0

read_2
read() == 1

read() == 0

eof
read() == -1

read() == -1

Fig. 3. Model of end-of-file semantics; dashed transitions are incomplete reads.

read operations that eventually lead to the end-of-file is quite large (see Figure 3).
The property was initially written programmatically, and the code did not track
the internal state strictly enough under all possible circumstances; Figure 4 shows
how a unit test that includes repeated calls to readByte and checks the result in
a case where the input has length 2. Most of the code, including a counter and
a flag, is devoted to expressing the property. As Figure 3 shows, a finite-state
machine can express the property much more succinctly [2].

SocketChannel sc = connect();
sc.configureBlocking(false);
int n = 0;
boolean eof = false;
while (n < 4) {

int read = readByte(sc);
if (eof) assert (read == -1); // ensure no 0 non-bl. read after EOF
if (read == -1) eof = true;
if (read != 0) { // ignore non-bl. zero-reads

if (n++ < 2) { // read data twice
assert (read == 1);

} else { // always read EOF after that
assert (read == -1);

} } }
sc.close();

Fig. 4. Unit test including the end-of-file property.

Third, the initial model was also limited in that it included an error state for
all cases where an exception has occurred [2]. This limits test cases to execute
only up to a possible exception, but not beyond it. The reasoning behind this is
that a well-behaved user of a library never triggers an exception due to incor-
rect use, of the types specified in the model. However, a component (an object
provided by the SUT) can usually survive an incorrect command by refusing
to execute it and throwing an exception instead. Because of this, it is possible
to continue a test beyond such a step, issuing more correct or incorrect com-
mands. This situation tends to be overlooked when modeling the environment
of a system. Earlier case studies have shown that this is a common human bias
in testing [10,18], and this has also carried over to modeling. While there in-
deed exist common cases where an object cannot be used after an exception has

269

been thrown, this is not the case for incorrect operations used on communication
channels.3 In the updated server model (see Figure 5), a trace can include other
operations (or the same one) after a given operation resulted in an exception.

open configureBlocking
 accept:
 NotYetBoundException

bound

bind

closed

close
non-bl. accept

(failed)

connected

bl. accept
non-bl. accept
(successful)

closeclose

 read
 bind, accept, read,
 configureBlocking:
 ClosedChannelException

 close

Fig. 5. Improved model for java.nio server API.

3.3 Summary

We found three problems with an initial model for a complex API in Java. The
first problem was caused by the model not including all possible alternatives.
The second problem was caused by a property that cannot be easily expressed
in code, but where a finite-state machine may capture its semantics succinctly.
Finally, the third problem stemmed from a human bias that tends to focus on
operations up to a “critical” operation throwing an exception, which lead to
the model being restricted by using an error state as a global target state for all
exceptions. Instead, a self-loop should have been used to allow traces to continue
beyond an exception.

4 Experiences with Models for Testing Collection Classes

4.1 Setting

In a series of experiments we studied the effectiveness of tool-supported test
case generation in comparison to humans developing unit tests [18,19]. The ex-
periment was based on a library of collection classes (i. e., containers such as
list, array, set, stack, and map) with manually seeded defects. The library we
used resembles the common Java collection classes. Thus, the study material had
3 On the other hand, a communication channel is usually in an unrecoverable state
after an exception thrown due to an I/O failure.

270

the benefit of being well known by the study participants and did not require
additional background information or familiarization. The size of the library
was about 2,800 lines of Java code distributed to 34 classes and interfaces and
a total of 164 methods. Most classes showed high algorithmic complexity and
used object-oriented concepts such as interfaces, abstract classes, inheritance,
polymorphism and dynamic binding.

In this context, we also briefly looked into the possibilities of model-based
approaches for unit testing [23] and developed some preliminary ideas about how
to construct models for our collection classes. However, model-based testing was
not part of one of our studies so far and, thus, the initial models have not been
evaluated further. In the following, we document our observations about some
of the challenges involved in constructing these initial models.

4.2 Modeling Test Scenarios

The starting point of our modeling attempts was the focus on developing unit
test suites for the collection classes. The main motivation was to reduce the
manual effort involved in implementing unit tests by automatically generating
some or all of the test cases. So our initial perspective on modeling was influenced
by the ideas and scenarios we wanted to explore in unit testing.

One of the first models was, thus, a generalization of a specific scenario that
can be implemented as simple unit test. The objective of this test was to add and
remove elements to/from a collection and to check the corresponding size of the
collection as well as that the removed elements were those that had previously
been added (Fig. 6).

@Test public void testAddRemove() {
LinkedList l = new LinkedList(); assertEquals(0, l.size());
assertTrue(l.add("1")); assertEquals(1, l.size());
assertTrue(l.add("2")); assertEquals(2, l.size());
assertTrue(l.remove("1")); assertEquals(1, l.size());
assertTrue(l.remove("2")); assertEquals(0, l.size());

}

Fig. 6. Exemplary unit test capturing a specific sequence of add/remove operations.

This test implements one specific, representative case out of the many pos-
sible sequences in which elements may be added and removed. The model we
initially developed still focused on the particular scenario of adding and removing
elements (see Fig. 7).

Yet with the help of this model, we were able to generate a huge set of test
cases that covered a wide range of combinations in which elements were added
and removed, eventually including also all the combinations implemented in the
manually developed test cases. Several other scenarios (e. g., using iterators or
sorting) were modeled in the same way, again with the intention to explore them
more extensively with huge sets of generated tests.

271

init main
 counter = 0

add(++counter)

remove() == counter--

Fig. 7. Simple model for generating arbitrary sequences of add/remove operations.

A weakness all these initial models had in common was that no further defects
were revealed, other than those that already had been found by the manually
written unit tests. By simply transferring the unit test scenarios into test models,
the resulting models were inherently limited to the underlying scenarios. Since
in our case these scenarios were already sufficiently covered by a (small) set of
manually implemented unit test cases, the model-based testing approach was
not able to reveal new errors.

4.3 Modeling Actions on the System Under Test

To improve the initially generated test cases and to better unleash the potential
of the model-based testing approach, we tried to advance the models towards
more realistic usage patterns. For example, we added further actions to include
all methods exposed in the public interface of a collection class and we removed
the guards preventing invalid method calls to cover a broad range of interac-
tions in addition and in combination to adding and removing elements. We also
integrated the different small models into one large model. For example, we inte-
grated the model testing iterators to make sure several iterators were used as part
of a larger scenario where collections are modified concurrently. The advanced
models actually generated new fault-revealing test cases we were not thinking
about when manually writing tests. Eventually, thus, we reached the conclusion
that the most realistic results will be achieved by developing a model that resem-
bles the complete system under test as closely as possible in favor of developing
several more specific models that reflect only individual test scenarios.

So far we have not completed the development of a full model for the collec-
tion classes. Nevertheless, we found that partial models or models at a higher
level of abstraction are already capable of detecting some of the faults, although
they are not rigorous enough to detect all the faults. Incrementally developing
and refining the models provides the benefit of early defect detection and allows
to balance the invested modeling effort to the achieved test results.

When proceeding towards a more complete model, we encountered another
challenge that still remains an open issue. With the exponentially increasing
number of possible scenarios described by a large model, the probability to suf-
ficiently cover all the known interesting scenarios and critical corner cases tends
to decrease. For example, since add and remove are equally probable, the num-
ber of elements in a collection usually stays low and collections rarely grow to

272

the point where new memory is allocated. Another example is related to the
special cases when inserting and removing list elements; the first and the last
position of a filled list have to be treated differently and should to be covered by
dedicated test cases. Yet this knowledge is not part of the model. However, since
this knowledge is already available when creating the model, it would be useful
to include it at this point as an aid to guide test case generation in direction of
the relevant scenarios.

4.4 Modeling Test Data

Models of collection classes usually exhibit only a small number of relevant states.
We found that an important aspect of the model relates to the test data, i. e.,
the data elements to be stored in the collections.

Our initial model concerning the add and remove operations used a counter
nrOfElements to keep track of the size of the collection and to compute its
state, i. e., empty or filled. When adding an element to the collection, we used
the counter as new integer object to be added. When removing an element, we
compared the obtained element with the counter to make sure the expected
element had been returned. Thus, this simple mechanism dynamically generated
reproducible test data. To avoid that the sequential order of the elements derived
from the counter created unbalanced sequences, e. g., new elements are always
added to the end of the collection, we used the counter as seed for a random
number generator.

A weakness of this first model was that it missed errors caused by mixing data
elements of different type. The containers TreeSet and TreeMap are sensitive to
such errors as are the operations for sorting and searching in collections. Thus,
the initial model did not find the related seeded defects since only comparable
data objects of type Integer were used.

We extended the initial model by creating numerous test data elements of
different types when setting up the model. The data elements were stored in
an array in arbitrary order. The counter we previously used in the model now
served as array index, which still allowed to determine the expected element to
be returned by a remove operation.

Only later we found a new fault that indicated that there is still room for
further improvement. The implementation of the collection classes was not able
to handle the case of a collection being added to itself. Some operations such as
toString would then lead to an unbounded recursion (see Fig. 8). We further
extended the model to dynamically add new data elements to the test data set
not only at startup but also while the model is executed. In future we plan to
extended the model to incorporate the idea of feedback-directed test genera-
tion [16].

Stack s = new Stack(); s.push(s); s.toString();

Fig. 8. Sequence revealing an unbound recursion in the implementation of Stack.

273

A related issue is involved in using null values, since the implementation
of some container classes accept null as valid data elements whereas others do
not. This issue was found when we tried to reuse generic models for different
container classes. This observation led us to the (ongoing) discussion to what
extent a model should reflect the behavior of the system under test versus its
environment, i. e., the allowable inputs from the anticipated usage. While Utting
et al. [24] classify this scope as a binary decision (input-only versus input-output
models), we found that our models always combined both sides since modeling
the input side also required some knowledge about the expected output.

4.5 Summary

We reported on work on modeling the behavior of Java container classes. Initial
models that were created from generalizations of existing unit tests ended up
not being effective at finding defects that were not already covered by unit
tests. When extending these models, we found that models that are convenient
to define (for example, using only numbers) end up not covering important
cases such as different data types or null values. Finally, creating modular and
reusable models is difficult, because small differences in components result in
pervasive differences in the allowable inputs requiring extra effort to adjust.

5 Industrial Project: Electric Circuit

5.1 Adapted work flow

As described in Section 2, various subtleties regarding the aspects of timed mod-
els and the reachability of model and system states in hardware are known. To
avoid incorrect models, verification engineers validate their model with domain
experts, who design the circuit. In this project, we employed the following work
flow to eliminate false positives (spurious warnings) and false negatives (missed
defects):

1. For a set of given desired states, reachability of these states is checked. For
example, any terminal state in the system should be reachable.

2. The specification is negated and model checked. This means that the model
checker analyzes whether there exist paths in the model that fulfill the de-
sired property. In a correct model, correct execution paths should be gener-
ated. These execution paths are generated as counterexamples by the model
checker, as the real property has been negated. Different counterexample
paths are subsequently reviewed together with domain experts to determine
whether they are correct and reflect the expected behavior of the system.

3. Properties that are trivially expected to hold are checked as well, as a form
of sanity check.

274

5.2 Problem found

The work flow described above prevents many defects in the model. However,
despite this, a modeling problem was found in an industrial project on an electric
circuit. The problem is related to how time is modeled in a real system. The
system model uses discrete time, where the state of each component is updated
on the next model clock tick. However, in real hardware, components can change
their state almost immediately; the “slowness” introduced by discrete time gave
rise to a counter-example in this model (see Figure 9). The problem in this
model is that gSet_PT_Voltage_A01 is updated in the next state even though
the voltage change is immediate in real hardware.

next(gSet_PT_Voltage_A01) := case
Gen_to_Load_A = 0 & Brk_A = 0 & GL_V_A = 0 & LG_V_A = 0 : V_Emp;
Gen_to_Load_A = 0 & Brk_A = 0 & GL_V_A = 0 & LG_V_A = 1 : V_Lrd;
Gen_to_Load_A = 0 & Brk_A = 0 & GL_V_A = 1 & LG_V_A = 0 : V_Gen;
...

esac;

Fig. 9. Part of a model transition describing an industrial circuit.

After the counterexample was investigated together with domain experts, it
was considered to be spurious (a false positive). To fix the model, the first line
in the model was amended to gSet_PT_Voltage_A01 := case (i. e., next was
removed). This eliminated the false positive.

6 Discussion

We have reported our experience from several modeling projects. In each project,
there were unexpected problems with creating a correct and sufficiently good
model to fulfill the purpose of model-based verification. In our opinion, it is
interesting that the problems were not caused by ambiguities of the requirements
or documentation. Where ambiguities caused problems, we were able to identify
them and clarify the open points by checking the reference implementation.

6.1 Model design

In our projects, problems arose when requirements were transformed into a
model. We often failed to create a model that matches a wide range of all possible
behaviors stated in the requirements. All of the models were “correct” but failed
to cover certain behaviors of the system, some of which were even implemented
incorrectly. In the software projects, the uncovered behaviors resulted in missed
defects (false negatives); in the hardware project, it resulted in a spurious error
(false positive), which gives an indication of a mismatch between the model and
reality.

275

The lack of expressiveness in the models did not originate from unintended
errors or oversights, but from intentional abstractions or decisions that led to
elegant models. The resulting lack of coverage was therefore a side-effect of con-
scious design decisions. From this observation, we identify the right level of
abstraction and human bias [10] as the key problems.

Abstraction. A major problem of creating a good model is to choose the right
level of abstraction. This is a very difficult problem that takes years of experience
to solve well. Some people even claim that this skill may not be teachable but
an innate ability [12]. In the future, we expect (modeling/abstraction) teaching
methods, and design tools, to improve to make the task a bit less daunting.

Human bias. When choosing an abstraction, human bias also often exists in
that the model is designed for a narrower purpose than necessary. This leads
to the omission of certain behaviors in the model. Like abstraction, this is a
fundamentally difficult problem to overcome; it requires to attack the problem
from various angles to obtain a comprehensive solution. We think that involving
a team of people in modeling, and making an effort to avoid any preconception,
can at least mitigate this problem. Ideally, models are created with an open, fresh
mind, and no possibilities, regardless of being difficult or trivial to handle, should
be disregarded. In practice, this may require careful engineering of the model
w .r. t. code reuse, if one takes into account that many small subtle differences
in system components result in a large increase of different possible behaviors
(and thus models or parameterizations thereof).

6.2 Model validation

Our experience shows that model-based verification has to be grounded in an
extensive validation of the model. Even though validation is in itself not a fully
mechanized activity, there exists tool support for tasks such as coverage analysis
and visualization, which contribute to validation. Furthermore, computer sup-
port can also be used in the modeling stage itself if certain artifacts such as a
reference implementation are available.

Machine learning. Machine learning of models has the obvious advantage of
not missing system states due to a simple oversight. If a correct (reference)
implementation of a system exists, then a model can be derived from the existing
system using machine learning [21,13]. The resulting model may not be human-
readable but its verification verdict may confirm or refute the result obtained
from a model designed by a human.

This approach can even be used if it is not known if a given system is correct;
in that case, the model reflects its current (possibly not fully correct) behavior
and can be used in regression testing to see if the behavior of the system changes
in unexpected ways. Changes that violate a given property then would likely be
found by a model that reflects the semantics of an older (“known good”) version
of the system.

276

Diagnosis and visualization. Some of the weaknesses observed in models arose
from the fact that they were generalizations of existing test scenarios. Therefore,
just lifting a set of execution traces to a grammar-based model is not guaran-
teed to add much value. It is also necessary to check whether the existing test
scenarios, and the derived model, are comprehensive enough.

We therefore advocate that model-based verification be combined with model
diagnosis and visualization, so possible flaws in a model learned from an incom-
plete set of tests, or a defective system, may be found. In our hardware project,
we already had adapted such a workflow by checking a sample of all possible
execution traces generated by the model checker.

Model coverage and mutation analysis. It is important to analyze the cover-
age of the model in the real system; this can be done for software testing in a
straightforward way [1,26]. However, coverage analysis on the final product gives
us limited information on the expressiveness of the model itself (in addition to
not being able to tell us whether all requirements are actually met). Hence, we
also advocate mutation operators for models to find mutants that still pass the
properties.

Mutating model properties is well-known [7] (and very similar to program
code [11]). However, work needs to be done on mutating the structure of the
model: a model could also be mutated by duplicating or deleting a transition, or
changing its source or target state. This reflects what we have learned from our
software model, where the model structure itself (and not just a given predicate
or property) restricted its behavior.

Combination of model-based and model-free techniques. When analyzing the im-
plementation of a system, fully automated analysis techniques can complement
human efforts. Unlike in the case where a model is designed by a human, auto-
mated techniques have no test oracle that evaluates the output of the analyzed
behaviors; instead, they serve as a “sanity check” for a wide range of generic
properties (accessed memory must be initialized, no deadlocks, etc.).

When using such “model-free” techniques, randomized testing [16] often finds
defects that humans miss [18]. Defects found by such tools may in turn spur an
improvement in a manually written model. A comparison of the states covered
by model-free techniques with the coverage of a manually written model, may
unveil weaknesses in the latter as well.

7 Conclusions and Future Work

Writing good models is a challenge. Models should not only be correct but suffi-
ciently expressive and inclusive to fulfill the purpose of finding defects or ensuring
their absence. Finding the right level of abstraction, and trying to avoid human
bias, or two of the key challenges in this process. A high level of abstraction
that allows an efficient encoding of a model (or reuse of existing model code)
may not cover enough details of all possible behaviors. Modeling languages and

277

tools should strive to improve this trade-off. Teaching engineers about commonly
encountered problems or human bias is also essential.

We have listed several non-trivial flaws that we found in existing model de-
velopment projects, and we have given suggestions how these may be avoided
in the future. Tool-supported analysis of the model itself will help to explore
the system behavior in its full breadth and may uncover missing model aspects
that human inspection misses. In this context, we advocate using model-free,
automated approaches where possible, so that their coverage can be compared
with the coverage yielded by a model derived from the specification.

We believe that more case studies can also shed more light into why certain
properties tend to be forgotten, and what types of modeling challenges engineers
typically encounter. This may eventually lead to the creation of a body of knowl-
edge for modeling and its effective use in practice. Existing work tends to focus
on surveying approaches and tools, such as MCBOK, a body of knowledge on
model checking for software development [22]; we hope that more fundamental
cognitive and process-level issues will also be covered in the future.

Acknowledgments. We would like to thank Takashi Kitamura and Kenji
Taguchi for their suggestions on this paper.

References

1. P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University
Press, New York, USA, 1 edition, 2008.

2. C. Artho, A. Biere, M. Hagiya, E. Platon, M. Seidl, Y. Tanabe, and M. Yamamoto.
Modbat: A model-based API tester for event-driven systems. In Proc. 9th Haifa
Verification Conference (HVC 2013), LNCS, Haifa, Israel, 2013. Springer. To be
published.

3. C. Artho, M. Hagiya, R. Potter, Y. Tanabe, F. Weitl, and M. Yamamoto. Software
model checking for distributed systems with selector-based, non-blocking commu-
nication. In Proc. 28th Int. Conf. on Automated Software Engineering (ASE 2013),
Palo Alto, USA, 2013.

4. D. Beatty and R. Bryant. Formally verifying a microprocessor using a simulation
methodology. In Proc. 31st Conf. on Design Automation (DAC 1994), pages 596–
602, San Diego, USA, 1994.

5. I. Beer, S. Ben-David, C. Eisner, and A. Landver. Rulebase: An industry-oriented
formal verification tool. In Proc. 33rd Conf. on Design Automation (DAC 1996),
pages 655–660, Las Vegas, USA, 1996.

6. A. Bertolino, G. De Angelis, A. Di Sandro, and A. Sabetta. Is my model right? let
me ask the expert. J. Syst. Softw., 84(7):1089–1099, July 2011.

7. P. Black, V. Okun, and Y. Yesha. In E. Wong, editor, Mutation testing for the new
century, chapter Mutation of model checker specifications for test generation and
evaluation, pages 14–20. Kluwer Academic Publishers, Norwell, MA, USA, 2001.

8. H. Bowman. How to stop time stopping. Form. Asp. Comput., 18(4):459–493,
2006.

9. H. Bowman, G. Faconti, J-P. Katoen, D. Latella, and M. Massink. Automatic
verification of a lip synchronisation algorithm using UPPAAL. In Proc. 3rd Int.

278

Workshop on Formal Methods for Industrial Critical Systems, pages 97–124. CWI,
1998.

10. G. Calikli and A. Bener. Empirical analyses of the factors affecting confirma-
tion bias and the effects of confirmation bias on software developer/tester per-
formance. In Proc. 6th Int. Conf. on Predictive Models in Software Engineering,
PROMISE 2010, pages 10:1–10:11, New York, NY, USA, 2010. ACM.

11. Yue J. and Mark H. An analysis and survey of the development of mutation testing.
Software Engineering, IEEE Transactions on, 37(5):649–678, 2011.

12. J. Kramer. Is abstraction the key to computing? Commun. ACM, 50(4):36–42,
April 2007.

13. A. Memon and B. Nguyen. Advances in automated model-based system testing of
software applications with a GUI front-end. Advances in Computers, 80:121–162,
2010.

14. M. Odersky, L. Spoon, and B. Venners. Programming in Scala: A Comprehensive
Step-by-step Guide. Artima Inc., USA, 2nd edition, 2010.

15. Oracle. Java Platform Standard Edition 7 API Specification, 2013.
http://docs.oracle.com/javase/7/docs/api/.

16. C. Pacheco, S. Lahiri, M. Ernst, and T. Ball. Feedback-directed random test
generation. In Proc. 29th Int. Conf. on Softw. Eng., ICSE 2007, pages 75–84,
Washington, DC, USA, 2007. IEEE Computer Society.

17. I. Pill and T. Quaritsch. Behavioral diagnosis of LTL specifications at operator
level. In Proc. 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI 2013), Beijing,
China, 2013. IJCAI/AAAI.

18. R. Ramler, D. Winkler, and M. Schmidt. Random test case generation and manual
unit testing: Substitute or complement in retrofitting tests for legacy code? In 36th
Conf. on Software Engineering and Advanced Applications, pages 286–293. IEEE
Computer Society, 2012.

19. R. Ramler, K. Wolfmaier, and T. Kopetzky. A replicated study on random test
case generation and manual unit testing: How many bugs do professional developers
find? In Proc. 37th Annual Int. Comp. Software & Applications Conf., COMPSAC
2013, pages 484–491, Washington, DC, USA, 2013. IEEE Computer Society.

20. V. Schuppan. Towards a notion of unsatisfiable and unrealizable cores for LTL.
Sci. Comput. Program., 77(7-8):908–939, 2012.

21. B. Steffen, F. Howar, and M. Isberner. Active automata learning: From DFAs to in-
terface programs and beyond. Journal of Machine Learning Research—Proceedings
Track, 21:195–209, 2012.

22. K. Taguchi, H. Nishihara, T. Aoki, F. Kumeno, K. Hayamizu, and K. Shinozaki.
Building a body of knowledge on model checking for software development. In
Proc. 37th Annual International Computer Software & Applications Conf. (COMP-
SAC 2013), Kyoto, Japan, 2013. IEEE.

23. M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers, Inc., San Francisco, USA, 2006.

24. M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab., 22(5):297–312, August 2012.

25. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering Journal, 10(2):203–232, 2003.

26. Y. Yu and M. Lau. A comparison of MC/DC, MUMCUT and several other coverage
criteria for logical decisions. J. Syst. Softw., 79(5):577–590, May 2006.

279

