
Seventh International Workshop on

Formal Techniques for Safety-Critical Systems

(FTSCS 2019)

Preliminary Proceedings

Editors: Osman Hasan and Frédéric Mallet

I

Preface

This volume contains the preliminary proceedings of the Seventh International
Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2019),
held in Shenzhen, China on November 9, 2019, as an ICFEM workshop.

The aim of this workshop is to bring together researchers and engineers who
are interested in the application of formal and semi-formal methods to improve
the quality of safety-critical computer systems. FTSCS strives to promote re-
search and development of formal methods and tools for industrial applications,
and is particularly interested in industrial applications of formal methods. Spe-
cific topics include, but are not limited to:

– case studies and experience reports on the use of formal methods for an-
alyzing safety-critical systems, including avionics, automotive, medical,
and other kinds of safety-critical and QoS-critical systems;

– methods, techniques and tools to support automated analysis, certifica-
tion, debugging, etc., of complex safety/QoS-critical systems;

– analysis methods that address the limitations of formal methods in indus-
try (usability, scalability, etc.);

– formal analysis support for modeling languages used in industry, such as
AADL, Ptolemy, SysML, SCADE, Modelica, etc.; and

– code generation from validated models.

The workshop received 16 regular and 1 tool paper submissions. Based on the
reviews and extensive discussions, the program committee selected and accepted
6 regular papers, 1 tool paper and 1 Work in Progress paper for presentation at
the workshop and inclusion in this volume. Another highlight of the workshop
is an invited talk by Sofiène Tahar on Formal Verification of Cyber-Physical
Systems.

Revised versions of accepted papers will appear in the post-proceedings of
FTSCS 2019 that will be published as a volume in Springer’s Communications in
Computer and Information Science (CCIS) series. Extended versions of selected
papers from the workshop will also appear in a special issue of the Science of
Computer Programming journal.

Many colleagues and friends have contributed to FTSCS 2019. We thank
Sofiène Tahar for accepting our invitation to give an invited talk and the authors
who submitted their work to FTSCS 2019 and who, through their contributions,
make this workshop an interesting event. We are particularly grateful that so
many well known researchers agreed to serve on the program committee, and
that they provided timely, insightful, and detailed reviews.

We also thank the editors of Communications in Computer and Information
Science for agreeing to publish the proceedings of FTSCS 2019 as a volume in
their series, and Shengchao Qin and Lijun Zhang for their help with the local
arrangements.

We hope that you will all enjoy the workshop!

November, 2019 Osman Hasan
Frédéric Mallet

II

Table of Contents

Keynote

Formal Verification of Cyber-Physical Systems . 1

Sofiène Tahar

Session 1: Avionics and Spacecraft

Formal Development of Multi-Purpose Interactive Application (MPIA)
for ARINC 661 . 86

Neeraj Singh, Yamine Ait Ameur, Dominique Mery, David Navarre,
Philippe Palanque, and Marc Pantel

Verifying Resource Adequacy of Networked IMA Systems at Concept
Level . 18

Rodrigo Saar de Moraes and Simin Nadjm-Tehrani

Automated Ada Code Generation from Synchronous Dataflow Programs
on Multicore: Approach and Industrial Study File . 35

Shenghao Yuan, Zhibin Yang, Jean-Paul Bodeveix, Mamoun Filali,
Tiexin Wang and Yong Zhou

Session 2: Applications

POP: A Tuning Assistant for Mixed-Precision Floating-Point
Computations . 1

Dorra Ben Khalifa, Matthieu Martel and Assalé Adjé

Visualising Railway Safety Verification . 52

Filippos Pantekis, Phillip James, Liam O’Reilly, Daniel Archambault
and Faron Moller

Probabilistic activity recognition for serious games with applications in
medicine . 63

Elisabetta De Maria, Thibaud L’Yvonnet, Sabine Moisan and
Jean-Paul Rigault

Session 3: Tools and Work in Progress

A Framework for CTLK Model Checking with QBF. 81

Emily Yu, Martina Seidl, and Armin Biere

Formal Semantics Extraction from MIPS Instruction Manual 104

Quang Thinh Trac and Mizuhito Ogawa

III

Program Committee

Musab AlTurki Runtime Verification Inc.

Ètienne Andrè University Paris 13
Toshiaki Aoki JAIST
Cyrille Artho KTH Royal Institute of Technology
Kyungmin Bae Pohang University of Science and Technology
Tom van Dijk University of Twente
Osman Hasan National University of Sciences & Technology
Klaus Havelund Jet Propulsion Laboratory
Ralf Huuck University of New South Wales
Fuyuki Ishikawa National Institute of Informatics
Sven Linker University of Liverpool
Robi Malik University of Waikato
Frédéric Mallet Université Nice Sophia Antipolis
Stefen Mitsch CMU
Roberto Nardone Mediterranean University of Reggio Calabria
Thomas Noll RWTH Aachen University

Peter Csaba Ölveczky University of Oslo
Lee Pike Automated Reasoning Group of Amazon Web Ser-

vices
Zhiping Shi Capital Normal University
Sofiène Tahar Concordia University
Carolyn Talcott SRI International
Jean-Pierre Talpin INRIA
Nils Timm University of Pretoria
Tatsuhiro Tsuchiya Osaka University
Huibiao Zhu East China Normal University

Additional Reviewers

Muhammad Qasim
Qianying Zhang
Waqar Ahmad

Formal Verification of Cyber-Physical Systems

Sofiène Tahar

Concordia University, Montreal, Quebec, Canada

Abstract. Due to major breakthroughs in software and engineering
technologies, embedded systems are increasingly being utilized in areas
ranging from aerospace and next-generation transportation systems, to
smart grid and smart cities, to health care systems, and broadly speaking
to what is known as Cyber-Physical Systems (CPS). A CPS is primarily
composed of several electronic, communication and controller modules
and some actuators and sensors. The mix of heterogeneous underlying
smart technologies poses a number of technical challenges to the design
and more severely to the verification of such complex infrastructure. In
fact, a CPS shall adhere to strict safety, reliability, performance and
security requirements, where on needs to capture both physical and ran-
dom aspects of the various CPS modules and then analyze their inter-
relationship across interlinked continuous and discrete dynamics. Often-
times however, system bugs remain uncaught during the analysis and
in turn cause unwanted scenarios that may have serious consequences in
safety critical applications. In this keynote talk, we introduce some of the
challenges surrounding the design and verification of contemporary CPS
with the advent of smart technologies. In particular, we will introduce
recent developments in the use of formal methods for the modeling, anal-
ysis and verification of CPS, including model checking, automated and
interactive theorem proving, and display a few real world CPS case stud-
ies from the automotive, avionics and healthtech domains from systems
to physical components based on photonics electronic devices.

1

Formal Development of Multi-Purpose Interactive
Application (MPIA) for ARINC 661

N. K. Singh1, Y. Aït-Ameur1, D. Méry2, D. Navarre3, P. Palanque3, and M. Pantel1

1 INPT-ENSEEIHT / IRIT, University of Toulouse, France
2 LORIA,Université de Lorraine & Telecom Nancy, Nancy, France

3 IRIT, Université de Toulouse, Toulouse, France
neeraj.singh@toulouse-inp.fr, yamine.aitameur@toulouse-inp.fr,
dominique.mery@loria.fr, navarre@irit.fr, palanque@irit.fr,

marc.pantel@toulouse-inp.fr

Abstract. This paper reports our experience for developing Human-Machine
Interface (HMI) complying with ARINC 661 specification standard for inter-
active cockpits applications using formal methods. This development relies on
the FLUID modelling language, we have proposed and formally defined in the
FORMEDICIS4 project. FLUID contains essential features required for speci-
fying HMI. To develop the Multi-Purpose Interactive Applications (MPIA) use
case, we follow the following steps: an abstract model of MPIA is written using
the FLUID language; this MPIA FLUID model is used to produce an Event-B
model for checking the functional behaviour, user interactions, safety properties,
and interaction related to domain properties; the Event-B model is also used to
check temporal properties and possible scenario using the ProB model checker;
and finally, the MPIA FLUID model is translated to Interactive Cooperative Ob-
jects (ICO) using the PetShop CASE tool to validate the dynamic behaviour, vi-
sual properties and task analysis. These steps rely on different tools to check
internal consistency along with possible HMI properties. Finally, the formal de-
velopment of the MPIA case study using FLUID and its embedding into other
formal techniques, demonstrates reliability, scalability and feasibility of our ap-
proach defined in the FORMEDICIS project.

Keywords: Human-machine interface (HMI), formal method, refinement and proofs,
Event-B, PetShop, verification, validation, animation.

1 Introduction

Developing a human-machine interface (HMI) is a difficult and time-consuming task [22]
due to complex system characteristics and user requirements, which require anticipat-
ing human behaviour, system components and operational environment. Moreover, the
design principles of HMI are different from traditional software development processes,
including techniques and tools [29]. Considering every aspect of the HMI development

4 Funded by ANR (Agence nationale de la recherche), https://anr.fr/
Projet-ANR-16-CE25-0007

2

2 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

process in a single framework, from requirement analysis to implementation, is a chal-
lenging task. Since a long time, formal methods play an important role for analyzing
system interaction [5, 10, 11], and their use has been widely adopted in the current de-
velopment process of HMI. Yet, to our knowledge there is no standard approach that
can be used to formally develop and design a safety-critical HMI from spec to code.

The ongoing project, ANR-FORMEDICIS [14] where our work takes place, aims
to propose a suite that can be used for developing and designing safety-critical HMIs.
In this project, we develop a pivot modelling language, FLUID (Formal Language of
User Interface Design), for the formal specification of HMI based on state transitions
systems allowing to express requirements, assumptions, expectations, nominal and non
nominal properties, and scenarios. Then, formal models in common languages can the
be derived from a FLUID model for verification, validation, simulation and anima-
tion. The derived formal models use theorem provers and model checkers for analyzing
the different required functional properties, nominal and non nominal properties, and
scenarios. In our work, we use the Event-B [1] modelling language for producing an
abstract formal model and the PetShop CASE tool [27] for producing Interactive Co-
operative Objects (ICO) model [23]. The produced models are analyzed with specific
developed tools. Rodin [2] is used for Event-B models and PetShop for ICO models.
The analyzed models provide feedback to the original FLUID model.

We propose to illustrate the FORMEDICIS approach applying it for the develop-
ment of a complex case study issued from aircraft cockpit design: MPIA (Multi-Purpose
Interactive Applications). First, we develop a FLUID model for MPIA and then we gen-
erate an Event-B model and an ICO model from the developed FLUID model. In this
development, we begin by specifying different MPIA components, including functional
behaviour, states, assumptions, expectations, interactions, properties and scenarios. The
embedding of the formal FLUID development of MPIA in Event-B preserves the re-
quired behaviour in the developed model. In the generated model, we prove important
properties, such as functional behaviour, user interactions, safety properties, and inter-
action related domain properties. We use the ProB model checker tool [21] to analyze
and validate the developed models, and to check temporal properties and possible sce-
nario for HMI. In the ICO model, we provide the dynamic behaviour of MPIA. The
developed ICO specification fully describes the potential interactions that users may
have with the application. It covers both input and output aspects related to users. In the
ICO formalism, there are four components: a cooperative object which describes the
behaviour of the object, a presentation part, activation function and rendering function
to link between the cooperative object and the presentation part.

This paper is organized as follows. Section 2 presents the required background.
Section 3 describes the FLUID language. Section 4 provides the selected MPIA case
study. section 5 presents a formal development of the case study in FLUID. Section 6
and Section 7 illustrates the formal developments of the FLUID model in Event-B and
PetShop, respectively. In Section 8, we provide an assessment of our work and Section 9
presents related work. Finally, Section 10 concludes the paper with future work.

3

Formal Development of MPIA for ARINC 661 3

2 Preliminaries

2.1 The Modelling Framework: Event-B

This section describes the modelling components of the Event-B language [1]. The
Event-B language contains two main components, context for describing the static prop-
erties of a system using carrier sets s, constants c, axiomsA(s, c) and theorems Tc(s, c),
and machine for describing behavioural properties of a system using variables v, invari-
ants I(s, c, v), theorems Tm(s, c, v), variants V (s, c, v) and events evt. A context can
be extended by another context, a machine can be refined by another machine and a
machine can use sees relation to include other contexts.

An Event-B model is characterized by a list of state variables possibly modified by
a list of events. A set of invariants I(s, c, v) shows typing invariants and the required
safety properties that must be preserved by the defined system. A set of events presents
a state transition in which each event is composed of guard(s)G(s, c, v, x) and action(s)
v : |BA(s, c, v, x, v′). A guard is a predicate, built on state variables, for enabling the
event’s action(s). An action is a generalized substitution that describes the ways one or
several state variables are modified by the occurrence of an event.

The Event-B modelling language supports the correct by construction approach to
design an abstract model and a series of refined models for developing any large and
complex system. Refinements, introduced by the REFINES clause, transform an ab-
stract model to a more concrete version by modifying the state description. A refine-
ment allows modelling a system gradually by introducing safety properties at various
refinement levels. New variables and new events may be introduced in a new refinement
level. These refinements preserve the relation between the refining model and its corre-
sponding refined concrete model, while introducing new events and variables to specify
more concrete behavior of a system. The defined abstract and concrete state variables
are linked by introducing the gluing invariants. The generated proof obligations ensure
that each abstract event is correctly refined by its concrete version.

Rodin [2] is an integrated development environment (IDE) for the Event-B mod-
elling language based on Eclipse. It includes project management, stepwise model de-
velopment, proof assistance, model checking, animation and automatic code generation.
Once an Event-B model is modelled and syntactically checked on the Rodin platform
then a set of proof obligations (POs) is generated using the Rodin proof engine. Event-
B supports different kinds of proof obligations, such as invariant preservation, non-
deterministic action feasibility, guard strengthening in refinements, simulation, variant,
well-definedness etc. More details related to the modelling language and proof obliga-
tions can be found in [1].

2.2 ICO Notation and PetShop CASE Tool

This section recalls the main features of the Interactive Cooperative Objects (ICOs)
formal description technique used for modelling software of interactive systems. ICO
is dedicated to the specification of interactive systems [23]. It uses concepts borrowed
from the object-oriented approach (dynamic instantiation, classification, encapsulation,

4

4 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

inheritance, client/server relationship) to describe the structural or static aspects of sys-
tems, and uses high-level Petri nets to describe their dynamic or behavioural aspects.

ICOs are dedicated to the modelling and the implementation of event-driven inter-
faces, using several communicating objects to model the system, where both behavior
of objects and communication protocol between objects are described by the Petri net
dialect called Cooperative Objects (CO). In the ICO formalism, an object is an entity
featuring four components: a cooperative object which describes the behavior of the
object, a presentation part (i.e. the graphical interface), and two functions (the activa-
tion function and the rendering function) which make the link between the cooperative
object and the presentation part.

An ICO specification fully describes the potential interactions that users may have
with the application. The specification encompasses both the "input" aspects of the
interaction (i.e. how user actions impact on the inner state of the application, and which
actions are enabled at any given time) and its "output" aspects (i.e. when and how the
application displays information relevant to the user). These aspects are expressed by
means of the activation function (for input) and the rendering function (for output).
ICOs description do not integrate graphical rendering of information and objects. This
is usually delegated to Java code or to other description techniques such as UsiXML [9].
The ICO notation is fully supported by a CASE tool called PetShop [27]. All the models
presented in the next sections have been edited and simulated using PetShop. Some
formal analysis is also supported by the tool but limited to the underlying Petri net,
removing the specificities brought by the high-level Petri net model.

3 FLUID Language

The FLUID language5 developed in the FORMEDICIS project is organized in three
main parts to describe static, dynamic and requirements. The static part defines type
definition, constant, sets and the required features for interactions. The dynamic part de-
fines a state-transition system for describing interactive system. The requirements part
expresses the required behaviour, including user tasks and scenarios. A FLUID model
is an INTERACTION module which is composed of six sections (see Fig. 1). The first
three sections, DECLARATION, ASSUMPTIONS and EXPECTATIONS, describe the
static part of a model. The following STATE and EVENT sections describe the dynamic
part of a model, and the last REQUIREMENT section describes the requirement part
of a model. The DECLARATION section allows to define new typing information that
can be used to describe a HMI model.

The typing information may depend on generic and abstract types, such as sets,
constants, enumerated sets, and natural and integer numbers. The STATE section
declares a list of variables, which are classified as Input, Output, SysInput and
SysOutput. The interactions between system and user can be characterized by the
Input and Output variables while the interactions between system components can be
characterized by SysInput and SysOutput variables. Note that all these variables can
be tagged using domain knowledge concepts borrowed from an external knowledge.

5 Deliverable D1.1a: Language specification Preliminary version

5

Formal Development of MPIA for ARINC 661 5

Model using the @tag (i.e. Enabled,
Visible, Checked, Colors) to make ex-
plicit the HMI domain properties of
HMI components. The EVENT sec-
tion describes a set of events to present
a state transition in which each event
is composed of guard(s) and action(s).
All these events are also categorized
as acquisition, presentation and
internal events. Acquisition events
model acquisition operations of HMI
component by modifying the acqui-
sition state variables. Similarly, the
presentation events model presentation
operation by modifying the presenta-
tion state variables. The internal events
model internal operations by modify-
ing the internal state variables. These
classification of events allow to check
reactive properties, such as one stating
that every acquisition is immediately
followed by a presentation event or an
internal event. This section also con-
tains an INITIALISATION event to set
an initial value to each defined variable.

INTERACTION Component_Name
DECLARATION

SETS s
CONSTANT c

STATE
Input State Variables
Output State Variables
SysInput State Variables
SysOutput State Variables

v //A variable without @tag
v@tag //A variables with domain specific @tag

EVENTS
INIT

Acquisition Events
Presentation Events
Internal Events

Event evt@tag[x]
where
G(s, c, v, x, v@tag, x@tag)

then
v : |BA(s, c, v, x, v′, v@tag, x@tag, v′@tag)

end
ASSUMPTIONS

A(s, c)
EXPECTATIONS

Exp(s, c)
REQUIREMENTS

PROPERTIES
Prop(s, c, v, v@tag)

SCENARIOS
NOMINAL

SC(s, c, v, v@tag)
NON NOMINAL

NSC(s, c, v, v@tag)
END Component_Name

Fig. 1: FLUID Model structure

The ASSUMPTIONS section introduces the required assumptions related to en-
vironment that includes the user and machine agents. These assumptions can be ex-
pressed as logical properties to express HMI properties. The EXPECTATIONS section
describes prescriptive statements that are expected to be fulfilled by parts of the envi-
ronment of an interactive system. Note that the assumptions and expectations can be
expressed in the same way, but both are different. The REQUIREMENTS section is
divided into two subsections, known as PROPERTIES and SCENARIOS. The PROP-
ERTIES section describes in logic all the required properties of an interactive system
that must be preserved by a defined system. The SCENARIOS section describes both
nominal and non-nominal scenarios using algebraic expressions, close to CTT [28], for
analyzing possible acceptable and non-acceptable interactions.

4 MPIA Case Study

ARINC 661 is a standard, designed by the Airlines Electronic Engineering Committee
(AEEC), for normalizing the definition of a Cockpit Display System (CDS) [6] and
it provides guidelines for developing the CDS independently from the aircraft systems.
The CDS provides graphical and interactive services to use applications within the flight
deck environment. It controls user-system interaction by integrating input devices, such
as keyboard and mouse.

6

6 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

We present the Multi-Purpose Interactive Application (MPIA) that complies with
ARINC 661 standard to demonstrate our formal modelling and verification approach
considering several software engineering concepts related to HMI. Fig. 2 depicts MPIA
which is a real User Application (UA) for handling several flight parameters. This ap-
plication contains a tabbed panel with three tabs, WXR for managing weather radar in-
formation, GCAS for Ground Collision Avoidance System parameters and AIRCOND
for dealing with air conditioning settings. A crew member is allowed to switch to any
mode (see Fig. 2) using tabs. These tabs have three different applications which can be
controlled by the pilot and the co-pilot using any input devices.

The MPIA window of any tab is composed of three main parts: information area,
workspace area and menu bar. The information area is the top bar of any tab that splits
in two parts for displaying the current state of the application on the left part and the er-
ror messages, actions in progress or bad manipulation when necessary on the right part.
The workspace area shows changes according to the selected interactive control panel.
For example, WXR workspace displays all the modifiable parameters of the weather
radar sensor, GCAS workspace shows some of the working modes of GCAS, and AIR-
COND workspace displays the selected temperature inside an aircraft. The menu bar
area contains three tabs for accessing the interactive control panels related to WXR,
GCAS and AIRCOND.

Fig. 2: Snapshots of the MPIA (from left to right: WXR, GCAS and AIRCOND)

5 Formal Development of MPIA in FLUID

We present a formal description of MPIA in FLUID. Due to space limitation, we show
only the FLUID model of weather radar information (WXR). The other HMI widgets,
such as GCAS and AIRCOND, of MPIA are developed in a similar way.

5.1 Declaration

For modelling the HMI of WXR in FLUID, we define a set of enumerated datatypes and
a constant to represent system properties in the DECLARATION clause. Three enu-
meration sets are: WXR_MODE_SELC_SET for modes, WXR_TILT_STAB-_MSG
for messages, and WXR_ACTIONS for actions. A constant WXR_ANGL_RANG is
defined a range of tilt angle.

7

Formal Development of MPIA for ARINC 661 7

5.2 State

In WXR model, we define several state variables in STATE clause for representing
Input, Output, SysInput and SysOutput states. There are four variables to represent input
or acquisition states and six variables to represent output or presentation states. All
these variables associated with tag information (Input, Enabled, Visible, Checked, etc.)
are defined with the given datatypes. Note that the associated tags are defined in a HMI
metadata library, including types.
5.3 Events

To model the functional inter-
active behaviour of WXR, we
define a set of events, including
an INIT event in the EVENT
clause. The INIT event only
sets initial value for each state
variable while the other events
are used to model possible
HMI behaviour (state changes).
In the INIT event, we show
initial state of an acquisition
variable (A_ModeSelection)
and a presentation variable
(P_checkMode), including tag
details. Other state variables
and their associated tags are
initialized in a similar way.

DECLARATION
// WXR Mode enumeration set
TYPE WXR_MODE_SELC_SET = enumeration (M_OFF, STDBY, TST, WXON, WXA)
// WXR Tilt and Stabilisation message enumeration set
TYPE WXR_TILT_STAB_MSG = enumeration (ON, OFF, AUTO, MANUAL)
// WXR Tilt angle range
CONSTANT WXR_ANGL_RANG = [-15 .. 15]
// WRX actions
TYPE WXR_ACTIONS = enumeration (TILT_CTRL, STAB_CTRL)

STATE Section
// Acquisition states
A_ModeSelection@{Input, Checked} : WXR_MODE_SELC_SET // Mode state
A_TiltSelection@{Input, Enabled} : WXR_TILT_SELC_SET // Tilt state
A_Stabilization@{Input, Enabled} : WXR_STAB_SELC_SET // Stabilization state
A_TiltAngle@{Input,Enabled} : WXR_ANGL_RANG // Tile angle state
. . .
// Presentation states
// Radio buttons presentation states
P_checkMode@{Output, Checked} : WXR_MODE_SELC_SET → BOOL
// CTRL tilt button presentation state
P_ctrlModeTilt_Button@{Output, Enabled} : WXR_ACTIONS
// CTRL tilt label presentation state
P_ctrlModeTilt_Label@{Output, Visible} : WXR_TILT_STAB_MSG
// CTRL stablization button presentation state
P_ctrlModeStab_Button@{Output, Enabled} : WXR_ACTIONS
// CTRL stablization label presentation state
P_ctrlModeStab_Label@{Output, Visible} : WXR_TILT_STAB_MSG
// Tilt angle value in the presentation state
P_TiltAngle@{Output, Enabled} : WXR_ANGL_RANG

The FLUID model contains 6 acquisition events in the acquisition clause, and 7
presentation events in the presentation clause. Here, we only show two acquisition
events (modeSelection and tiltCtrl) and one presentation event (checkMode) to
demonstrate the modelling concepts related to HMI. Note that the name of acquisition
event is followed by @Acquisition, and the name of presentation event is followed by
@Presentation. The semantics of FLUID language guarantee that an acquisition event
is always followed by the corresponding presentation event or internal event to express
an interaction behaviour composed of several atomic events related to input, output etc.

The event modeSelection is allowed to select any mode to the input or acquisition
state (A_ModeSelection) from the workspace area of WXR (see Fig. 2). Note that only
input variable and associated tag value are updated through event’s actions. Similarly,
the event tiltCtrl is used to select a possible action to the input or acquisition state
(A_TiltSelection). In this event, the actions are also used to update input variable,
including tag. The event checkMode presents the state changing behaviour of a widget
(radio) defined in the workspace area (see Fig. 2).

The guard of this event state that the selected widget option, acquired by the acquisi-
tion state (A_ModeSelection) should not be Checked. The action of this event shows
the selected option as TRUE and the other options as FALSE, and the associated tag
is updated as TRUE. Other events related to acquisition and presentation are modelled
in a similar way.

8

8 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

5.4 Requirements

The REQUIREMENTS clause of FLUID
model contains a set of required proper-
ties, and nominal and non nominal scenar-
ios expressing expected, respectively un-
expected, behaviors. In our model, we de-
fine 8 safety properties to check the cor-
rectness of HMI model. The first safety
property (Prop_1) states that always a sin-
gle option is selected from the workspace
area (see Fig. 2). The second property
(Prop_2) states that the acquisition event
modeSelection is always followed by
the presentation event checkMode. Other
properties are defined to check the inter-
action behaviour of HMI components. We
define a nominal scenario SC_1 and a non
nominal NSC_1 which are started by the
INIT event that is followed by the mode se-
lection, tilt selection, stabilization and tilt
angle activities using interleaving operator
(||). Note that each activity is composed of
acquisition and presentation events in a se-
quential order (;). In addition, if there are
more than one possible events of acquisi-
tion, or presentation then we use optional
operator [] to compose them. To simu-
late these scenarios iteratively, we use ∗
operator. Note that the nominal scenario
shows possible expected HMI interactions
that may occur, while the non nominal sce-
nario shows unexpected HMI interaction
that must not occur.

EVENTS Section
// Initialisation Event
INIT =
A_ModeSelection := OFF
A_ModeSelection@Checked := TRUE
. . .
// Only OFF mode is selected at initialisation
P_checkMode := {i 7→ j | i ∈ WXR_MODE_SELC_SET ∧
j = FALSE } ∪ { M_OFF 7→ TRUE })\{M_OFF 7→ FALSE}
P_checkMode@Checked := TRUE
. . .

// ACQUISITION Events
// Any mode is allowed to select from WXR to acquisition state
Event modeSelection@Acquisition =

ANY
mode

WHERE
mode : WXR_MODE_SELC_SET

THEN
A_ModeSelection := mode
A_ModeSelection@Checked := TRUE

END

// The tilt selection model : AUTO or MANUAL (to acquisition state).
// The CTRL push-button allows to swap between the two modes

Event tiltCtrl@Acquisition =
ANY
n_tilt

WHERE
n_tilt : WXR_ACTION ∧ n_stab = TILT_CTRL ∧
n_stab@Enabled = TRUE

THEN
A_TiltSelection := n_tilt
A_TiltSelection@Enabled := TRUE

END

Event stabCtrl@Acquisition = . . .
Event tiltAngle@Acquisition = . . .
Event tiltAngle_Greater_15@Acquisition = . . .
Event tiltAngle_Less_15@Acquisition = . . .

// PRESENTATION Events
// Presentation of radio button: Only selected mode will be checked as TRUE
Event checkMode@Presentation =

WHEN
A_ModeSelection@Checked = TRUE

THEN
P_checkMode:=({i 7→ j | i ∈ WXR_MODE_SELC_SET
∧ j = FALSE }∪{ A_ModeSelection 7→ TRUE })\
{A_ModeSelection 7→ FALSE}
P_checkMode@checked := TRUE

END
Event ctrlModeTilt_Auto@Presentation = . . .
Event ctrlModeTilt_Manual@Presentation = . . .
Event ctrlModeStab_On@Presentation = . . .
Event ctrlModeStab_Off@Presentation = . . .
Event tiltAngle_True@Presentation = . . .
Event tiltAngle_False@Presentation = . . .

REQUIREMENTS Section
PROPERTIES
Prop1 :∀ m1,m2· m1∈ WXR_MODE_SELC_SET ∧ m2∈ WXR_MODE_SELC_SET ∧ m1 7→ TRUE ∈ prj1(prj1(P_checkMode)) ∧

m2 7→ TRUE ∈ prj1(prj1(P_checkMode)) ⇒ m1=m2
Prop2 :G(e(modeSelection@Acquisition) ⇒ X (e(checkMode@Presentation))))
Prop3 :(e(tiltAngle@Acquisition) ⇒ (e(tiltAngle_True) or e(tiltAngle_False@Presentation)))
Prop4 :{P_ctrlModeTilt_Label = (AUTO 7→Output)7→TRUE ⇒ P_ctrlModeStab_Label = (OFF 7→Output) 7→TRUE}
Prop5 :{P_ctrlModeTilt_Label = (MANUAL 7→Output) 7→TRUE ⇒ P_ctrlModeStab_Label = (ON 7→Output)7→TRUE}
Prop6 :{P_ctrlModeTilt_Label = (AUTO 7→Output)7→TRUE ⇒ P_ctrlModeStab_Button = (STAB_CTRL 7→Output)7→FALSE}
Prop7 :{P_ctrlModeTilt_Label = (MANUAL 7→Output) 7→TRUE ⇒ P_ctrlModeStab_Button = (STAB_CTRL 7→Output) 7→TRUE}
Prop8 :{P_ctrlModeTilt_Label = (MANUAL 7→Output) 7→TRUE ⇒ P_TiltAngle = (10 7→Output)7→TRUE}

SCENARIOS
NOMINAL
SC_1 = INIT; ((modeSelection@Acquisition; checkMode@Presentation)
|| (tiltCtrl@Acquisition; (ctrlModeTilt_Auto@Presentation [] ctrlModeTilt_Manual@Presentation))
|| (stabCtrl@Acquisition; (ctrlModeStab_On@Presentation [] ctrlModeStab_Off@Presentation))
|| (tiltAngle@Acquisition [] tiltAngle_Greater_15@Acquisition [] Evt_tiltAngle_Less_15@Acquisition);
(tiltAngle_True@Presentation [] Evt_tiltAngle_False@Presentation))∗

NON NOMINAL
SC_1 = INIT; ((modeSelection@Acquisition; checkMode@Presentation)
|| (tiltCtrl@Acquisition; ctrlModeTilt_Auto@Presentation ; (stabCtrl@Acquisition[]tiltAngle@Acquisition)))∗

9

Formal Development of MPIA for ARINC 661 9

In this model, the SC_1 shows possible interactions of WXR HMI while the NSC_1
shows some of the impossible WXR HMI interactions, for example, if an acquisition of
tilt selection is followed by the auto mode presentation then the acquisition of stabiliza-
tion or tilt angle is not possible.

6 Exploring the MPIA FLUID Model in Event-B

A FLUID model is translated into Event-B as follows: 1) An INTERACTION FLUID
component is interpreted as a machine and a context in Event-B; 2) All the constants
and sets defined in a FLUID model correspond to an Event-B context; 3) FLUID states
are translated into a set of variables in an Event-B model, and the variable typing is also
defined as typing invariants of Event-B; 4) FLUID initialisation event and the other
events are transformed into an Event-B initialisation event and to a set of events; and 5)
The properties of FLUID model are translated into Event-B invariants. Note that some
properties are translated into temporal properties using LTL or CTL formula in ProB
to check system properties and to animate our models. Finally, the produced Event-B
model is checked within the Rodin environment and all the defined safety properties
proved successfully.

6.1 Model

Context. In the translated model, two different contexts are defined, the first one con-
tains domain specific information related to HMI while the other one is used to define
static properties of HMI. In the domain specific context, we define possible tag in-
formation for different widgets, for example, we define an enumerated set HMI_TAG
to state the tag properties of HMI states in daxm1. In addition, we also define three
constants, CHECKED, VISIBLE and ENABLED, as boolean to define tag information
for HMI widgets (daxm2). In the second context, we declare three enumerated sets,
WXR_MODE_SELC_SET for modes, WXR_MODE_SELC_SET for a set of mes-
sages, and WXR_ACTIONS for a set of actions to specify the MPIA components using
axioms (axm1-axm3). Enumerated sets are defined using the partition statement. We
also declare a constant, WXR_ANGL_RANG, to specify a range (-15 .. +15) of the tilt
angle in axm4.

daxm1 : partition(HMI_TAG, {Input}, {Output}, {SysInput}, {SysOutput})
daxm2 : CHECKED = BOOL ∧ V ISIBLE = BOOL ∧ ENABLED = BOOL

axm1 : partition(WXR_MODE_SELC_SET, {M_OFF}, {STDBY }, {TST}, {WXON}, {WXA})
axm2 : partition(WXR_TILT _STAB_MSG, {AUTO}, {MANUAL}, {ON}, {OFF})
axm3 : partition(WXR_ACTIONS, {TILT _CTRL}, {STAB_CTRL})
axm4 : WXR_ANGL_RANG = −15 .. 15

Machine. An Event-B machine is also derived from the FLUID model that is translated
straightforward. The generated Event-B model shows the HMI behaviour and possible
interactions with MPIA widgets. In this model, we introduce 11 state variables (inv1 -
inv11) to model the dynamic behaviour of the system. All these variables are similar
to the FLUID model and are declared as tuple using cartesian product (×). Note that
each variable contains state information and tag information related to HMI. In the

10

10 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

current model, we introduce a safety property saf1 (see property Prop1) to state that
there is only one mode selected from the MODE SELECTION of WXR. Note that other
properties (Prop2 - Prop8) of the FLUID model are defined later in the ProB model
checker.

inv1 : A_ModeSelection ∈ WXR_MODE_SELC_SET ×HMI_TAG × CHECKED
inv2 : A_TiltSelection ∈ WXR_ACTIONS ×HMI_TAG × ENABLED
inv3 : A_Stabilization ∈ WXR_ACTIONS ×HMI_TAG × ENABLED
inv4 : A_TiltAngle ∈ WXR_ANGL_RANG ×HMI_TAG × ENABLED
inv5 : P _checkMode ∈ (WXR_MODE_SELC_SET → BOOL) ×HMI_TAG × CHECKED
inv6 : P _ctrlModeTilt_Button ∈ WXR_ACTIONS ×HMI_TAG × ENABLED
inv7 : P _ctrlModeTilt_Label ∈ WXR_TILT _STAB_MSG ×HMI_TAG × V ISIBLE
inv8 : P _ctrlModeStab_Button ∈ WXR_ACTIONS ×HMI_TAG × ENABLED
inv9 : P _ctrlModeStab_Button ∈ WXR_ACTIONS ×HMI_TAG × ENABLED
inv10 : P _ctrlModeStab_Label ∈ WXR_TILT _STAB_MSG ×HMI_TAG × V ISIBLE
inv11 : P _TiltAngle ∈ WXR_ANGL_RANG ×HMI_TAG × ENABLED
saf1 : ∀m1,m2·m1 ∈ WXR_MODE_SELC_SET ∧m2 ∈ WXR_MODE_SELC_SET∧

m1 7→ TRUE ∈ prj1(prj1(P _checkMode)) ∧m2 7→ TRUE ∈ prj1(prj1(P _checkMode))⇒m1 = m2

Events. In this translated model, we introduce 14 events, including the INITIALI-
SATION event. The INITIALISATION event is used to set the initial value for each
declared state. All these state variables are assigned as tuples to show initial states of
MPIA.
For example,
P_checkMode is
set as M_OFF
mode and other
modes are not
selected from the
option widget of
MPIA (see act6).

EVENT INITIALISATION
BEGIN

act1 : A_ModeSelection := M_OFF 7→ Input 7→ TRUE
act2 : A_TiltSelection := TILT _CTRL 7→ Input 7→ TRUE

. . .

. . .
act6 : P _checkMode := (({i 7→ j|i ∈ WXR_MODE_SELC_SET ∧ j = FALSE}∪

{M_OFF 7→ TRUE}) \ {M_OFF 7→ FALSE}) 7→ Output 7→ TRUE
act7 : P _ctrlModeTilt_Button := TILT _CTRL 7→ Output 7→ TRUE

. . .

. . .
END

The event modeSelection@Acquisition selects the WXR mode in acquisition mode.
The guard of this event allows to choose any mode by selecting the option widget.
The action of this event states
that the acquisition state
A_ModeSelection of WXR
mode sets the selected mode
with tag information, such
as this variable is in acquisi-
tion state and checked. The
event tiltCtrl@Acquisition
is also specified in similar
style to model the acquisition
behaviour of the tilt angle.

EVENT modeSelection@Acquisition
ANY mode

WHERE
grd1 : mode ∈ WXR_MODE_SELC_SET

THEN
act1 : A_ModeSelection := mode 7→ Input 7→ TRUE

END

EVENT tiltCtrl@Acquisition
ANY n_tilt

WHERE
grd1 : n_tilt ∈ WXR_ACTIONS ×HMI_TAG × ENABLED∧

prj1(prj1(n_tilt)) = TILT _CTRL ∧ prj2(n_tilt) = TRUE
THEN

act1 : A_TiltSelection := n_tilt
END

The eventcheckMode@Presentation is related to presentation to model the WXR
mode. The guard of this event state that acquisition state, A_ModeSelection, of WXR
mode is checked (TRUE) and the action of this event updates the presentation state vari-
able, P_checkMode. The P_checkMode is set as only the selected acquisition mode
and other modes are not selected from the option widget of MPIA (see act1). Other re-
maining acquisition and presentation events are modelled in a similar way. A complete
formal development of the MPIA case study is available at6.

6 http://singh.perso.enseeiht.fr/Conference/FTSCS2019/MPIA_Models.zip

11

Formal Development of MPIA for ARINC 661 11

EVENT checkMode@Presentation
ANY n_tilt

WHERE
grd1 : prj2(A_ModeSelection) = TRUE

THEN
act1 : P _checkMode := (({i 7→ j|i ∈ WXR_MODE_SELC_SET ∧ j = FALSE}∪

{prj1(prj1(A_ModeSelection)) 7→ TRUE})\
{prj1(prj1(A_ModeSelection)) 7→ FALSE}) 7→ Output 7→ TRUE

END

6.2 Model Validation and Analysis

This section summarises the generated proof obligations using Rodin prover. This de-
velopment results in 44 proof obligations, in which 41 (93%) are proved automatically,
and the remaining 3 (7%) are proved interactively by simplifying them.

The model analysis is performed using ProB [21] model checker, which can be
used to explore traces of Event-B models. The ProB tool supports automated consis-
tency checking, constraint-based checking and it can also detect possible deadlocks.
Note that the generated Event-B model is used directly in ProB. In this work, we use
the ProB tool as a model checker to prove the absence of errors (no counterexample
exists) and deadlock-free. We also define LTL properties (Prop1-Prop7) in ProB of
the FLUID model to check the correctness of the generated MPIA model. Note that
the ProB uses all the described safety properties during the model checking process to
report any violation of safety properties against the formalized system behaviour. To
validate the developed MPIA model, we also use the ProB tool for animating the mod-
els. This validation approach refers to gaining confidence that the developed models are
consistent with requirements.

The ProB anima-
tion helps to iden-
tify the desired be-
haviour of the HMI
model in different
scenarios.

Prop1 : (G(e(AE_modeSelection) => X(e(PE_checkMode))))
Prop2 : (e(AE_tiltAngle) => (e(PE_tiltAngle_True)ore(PE_tiltAngle_False)))
Prop3 : {P _ctrlModeTilt_Label = (AUTO|− > Output)|− > TRUE =>

P _ctrlModeStab_Label = (OFF |− > Output)|− > TRUE}
Prop4 : {P _ctrlModeTilt_Label = (MANUAL|− > Output)|− > TRUE =>

P _ctrlModeStab_Label = (ON|− > Output)|− > TRUE}
Prop5 : {P _ctrlModeTilt_Label = (AUTO|− > Output)|− > TRUE =>

P _ctrlModeStab_Button = (STAB_CTRL|− > Output)|− > FALSE}
Prop6 : {P _ctrlModeTilt_Label = (MANUAL|− > Output)|− > TRUE =>

P _ctrlModeStab_Button = (STAB_CTRL|− > Output)|− > TRUE}
Prop7 : {P _ctrlModeTilt_Label = (MANUAL|− > Output)|− > TRUE =>

P _TiltAngle = (10|− > Output)|− > TRUE}

7 Exploring the MPIA FLUID Model in PetShop

This section describes the embedding of the FLUID model in PetShop for verifying
MPIA interaction behaviour using Petri nets. The ICO specification of MPIA is exe-
cutable. That allows us to get a quick prototype before its implementation. The MPIA
model is also produced in the ICO specification language from the FLUID model. Note
that the ICO model only consider input and output aspects extracted from the MPIA
FLUID model. These input and output aspects are defined by adding more precise de-
tails for execution purpose by analysing and refining the MPIA FLUID model. In the
following section, we describe only the development of MPIA in PetShop.
Structuring of the Modelling. ICOs are used to provide a formal description of the
dynamic behaviour of an interactive application. An ICO specification fully describes
the potential interactions that users may have with the application. The specification
encompasses both the "input" aspects of the interaction (i.e. how user actions impact on
the inner state of the application, and which actions are enabled at any given time) and

12

12 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

its "output" aspects (i.e. when and how the application displays information relevant
to the user). In the ICO formalism, an object is an entity featuring four components: a
cooperative object which describes the behaviour of the object, a presentation part, and
two functions (the activation function and the rendering function) which make the link
between the cooperative object and the presentation part. As stated above we present
how ICOs are used for describing an interactive application using the WXR application
presented in the introduction part of the section 4. We thus successively presents the
four ICO parts for that application.
Presentation Part. The Presentation of an object states its external appearance. In the
case of a WIMP interface, this Presentation is a structured set of widgets organized
in a set of windows. Each widget is for the user to interact with the interactive system
(provide input) and/or for the system to present information to the user (present output).
The way used to render infor-
mation (either in the ICOs de-
scription and/or code) is hid-
den behind a set of rendering
methods (in order to render
state changes and availability
of event handlers) and a set
of user events, embedded in a
software interface, in the same
language as the one used for
the COs interface description.

Public interface WXR_PAGE extends ICOWidget {
// List of user events.
public enum WXR_PAGE_events {asked_off, asked_stdby, asked_wxa,
asked_wxon, asked_tst, asked_auto asked_stabilization,
asked_changeAngle}
// List of activation rendering methods.
void setWXRModeSelectEnabled(WXR_PAGE_events, List<ISubstitution>);
void setWXRTiltSelectionEnabled (WXR_PAGE_events, List<ISubstitution>);
// List of rendering methods.
void showModeSelection (IMarkingEvent anEvent);
void showTiltAngle (IMarkingEvent anEvent);
void showAuto (IMarkingEvent anEvent);
void showStab (IMarkingEvent anEvent);
}

Fig. 3: Software interface of the page WXR from the user ap-
plication MPIA

Cooperative Objects. Using the Coop-
erative Object (CO) description tech-
nique, ICO adds the following features:
(1) Links between user events from
the presentation part and event handlers
from the Cooperative Object descrip-
tion; (2) Links between user events
availability and event-handlers avail-
ability; and (3) Links between state
in the Cooperative Object changes and
rendering. As stated above, a CO de-
scription is made up of a software in-
terface and its behaviour is expressed
using high-level Petri nets. The WXR
page does not offer public methods
(except the default ones for allowing
the event mechanism), and this is why
there is no software interface here.

Fig. 4: High-level Petri net model describing the be-
haviour of the page WXR

Figure 4 shows the entire behaviour of page WXR which is made of two non con-
nected parts: (1) The Petri net in the upper part handles events received from the 5
CheckButtons (see left-hand side of Fig. 2 for the presentation part). Even though they
are CheckButtons the actual behaviour of that application makes it only possible to se-
lect one of them at a time. The current selection (an integer value from 1 to 5) is carried

13

Formal Development of MPIA for ARINC 661 13

by the token stored in MODE_SELECTION place and corresponds to one the possible
CheckButtons (OFF, STDBY, TST, WXON, WXA). The token is modified by the tran-
sitions (new_ms = 3 for instance) using variables on the incoming and outgoing arcs as
formal parameters of the transitions. (2) The Petri net in the lower part handles events
from the 2 PicturePushButton and the EditBoxNumeric. Interacting with these buttons
will change the state of the application. In the current state, this part of the application
is in the manual state and the tokens are placed in the NOT_AUTO and STABILIZA-
TION_OFF. This configuration of tokens is required to make available of the edit box
to the user (visible on the model as transition changeAngle_T1 is in a darker colour).
Activation Function. For WIMP interfaces user towards system interaction (inputs)
only takes place through widgets. Each user action on a widget may trigger one of the
CO event handlers. The relationship between user services and widgets is fully stated by
the activation function that associates each event from the presentation part to the event
handler to be triggered and to the corresponding rendering method for representing the
activation or the deactivation: When a user event is triggered, the Activation function is
notified (via an event mechanism) and requires the CO to fire the corresponding event
handler providing the value from the user event. When the state of an event handler
changes (i.e. becomes available or unavailable), the Activation function is notified (via
the observer and event mechanism presented above) and calls the corresponding acti-
vation rendering method from the presentation part with values coming from the event
handler.
The activation function is fully
expressed through a mapping
to a CO behaviour element.
Figure 5 shows the activation
function for page WXR. Each
line in this table describes the
three objects taking part in the
activation process. Fig. 5: Activation Function of the page WXR

The first line, for instance, describes the relationship between the user event ask_off
(produced by clicking on the CheckButton OFF), the event handler off (from the be-
haviour) and the activation rendering method setWXRModeSelectEnabled from the
presentation part. More precisely: (i) When the event handler off becomes enabled,
the activation function calls the activation rendering method setWXRModeSelectEn-
abled providing it with data about the enabling of the event handler. On the physical
interaction side, this method call leads to the activation of the corresponding widget
(i.e. presenting the checkButton OFF as available). (ii) When the button OFF of the
presentation part is pressed, the presentation part raises the event called asked_off. This
event is received by the activation function which requires the behaviour part to fire the
event handler off (i.e. the transition off_T1 in the Petri net of Figure 4).
Rendering function. For WIMP interfaces system towards user interaction (outputs)
present to the user the state changes that occurs in the system. The rendering function
maintains the consistency between the internal state of the system and its external ap-
pearance by reflecting system states changes on the user interface. Indeed, when the
state of the Cooperative Object changes (e.g. marking changes for a given place), the

14

14 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

Rendering function is notified (via the observer and event mechanism) and calls the
corresponding rendering method from the presentation part with tokens or firing values
as parameters. In a similar way as for the Activation function, the Rendering function
is fully expressed as a CO class.

The rendering function of the WXR application is presented in Fig. 6. In this table
one line describes the three objects taking part in the rendering process. The first line for
instance describes the relationship between the place MODE_SELECTION, the event
linked to this place (and in which we are interested in token_enter) and the rendering
method showModeSelection from the presentation part component.
The signification of this line is:
When a token enters the place
MODE_SELECTION, the rendering
function is notified and calls the rendering
method showModeSelection providing it
with data concerning the new marking of
the place that is used as parameters of the
rendering method. Fig. 6: Rendering Function of the page WXR

8 Assessment

To the best of our knowledge, there is currently no full fledge development framework
for covering every aspect of modelling and designing related to interactive systems. Our
work project targets such a framework for interactive systems complying with ARINC
661 standard. This is the first integrated formalised framework for formal development
of HMI. To support the proposed framework, we have developed a pivot modelling
language, FLUID, to specify HMI requirements. Since a long time, stepwise refinement
plays an important role for modelling complex systems. We also target a correct by
construction design of interactive systems abstractly and then progressively develop
a concrete model closed to an implementation. This progressive development allows
us to introduce functional behaviour and safety properties related to system and user
interactions.

The proposed language is expressive enough to cover possible functional behaviour,
system input and output states, presentation, and nominal and non-nominal scenar-
ios. The FLUID language allows us to build a complex HMI systematically, including
reasoning for each step systematically considering functions, properties and domain
knowledge related to HMI. To demonstrate the practicality of the proposed language,
we have developed industrial examples. We have already developed the HMIs for Auto-
matic Cruise Control (ACC), Traffic alert and Collision Avoidance System (TCAS) and
MPIA. We can provide a list of safety properties, and nominal and non-nominal scenar-
ios to check the correctness of a formalized system including interaction behaviour. The
properties and scenarios derive from the usability principles, such as usability, flexibil-
ity and robustness. The presented case study covers only some of the usability princi-
ples. such as consistency, observability, tagging and task conformance. In addition, the
ICO specification fully describe the potential interactions that users may have with the
application to validate the dynamic behaviour, visual properties and task analysis.

15

Formal Development of MPIA for ARINC 661 15

Modelling an interactive system using the FLUID language provides a common
understanding for the various stakeholders. In summary, the FLUID model is an abstract
pivot core model of HMI for expressing interaction behaviour using state transition
systems, assumptions, properties and scenarios. If there will be any error detected then
the FLUID model can be modified accordingly. Many techniques, like Event-B, ProB,
ICO, task analysis with CTT have been applied on FLUID model. This modelling and
analysing steps can be applied iteratively to obtain a correct FLUID model. Similar to
this framework, in our MPIA case study, we use on the Event-B modelling language
for specifying system and defining safety properties while we use ICO for analysing
possible interactions by refining the FLUID model. Note that the use of different tools
provides us more confidence on the defined FLUID model. On the other hand we need
to check the combination of the approach for an interactive system and the freedom of
the integration of different techniques and tools.

9 Related Work

Several approaches are developed in the past years for modelling, designing, verifying
and implementing interactive systems. Due to increasing complexity, formal methods is
considered as a first-class citizen for modelling and designing the interaction behaviour
of HMI for critical systems. There are several approaches, such as Petri net, process
algebra and model checking, have been used successfully for checking the intended
behaviour of HMI. Palanque et al. [25, 26] propose the development of HMI using In-
teractive Cooperative Objects (ICO) formalism, in which the object-oriented framework
and possible functional behaviour are described with high-level Petri-nets.

Compos et al. [11] propose a framework for checking the HMI system for a given
set of generic properties using model checkers. Navarre et al. [24] propose a framework
for analyzing the interactive systems, particularly for the combined behaviour of user
task models and system models to check whether a user task is supported by the system
model. Bolton et al. [10] propose a framework to analyze human errors and system
failures by integrating the task models and erroneous human behaviour.

In [5], the authors propose an incremental development of an interactive system us-
ing B methods to model the important properties of HMI, such as reachability, observ-
ability and reliability. A development lifecycle for generating source code for HMI from
an abstract model is presented in [3]. The Event-B language is used for developing the
multi-model interactive system supporting with CARE properties using correct by con-
struction approach in [4]. In [19], the authors propose an approach with supported tools
based on CAV architecture, hybrid model of MVC and PAC, for developing HMI from
specification to implementation. In [16], the authors present a developed methodology,
based on MVC architecture, for developing an HMI using a correct by construction
approach for introducing functional behaviour, safety properties and HMI components.

A formal interaction mechanism is described using the synchronous data flow lan-
guage Lustre [17] at ONERA. In [7], the authors present derivation of possible interac-
tions from an informal description of the interactive system. These derived interactions
are used to model a formal model of the interactive system for checking and validating
the required HMI behaviour of interactive system, and for generating the test cases [8].

16

16 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

A modelling language, LIDL (LIDL Interaction Description Language), is proposed
in [20] to describe a formal description of possible interaction of HMI. In this language,
the static nature of HMI is specified using interfaces and the dynamic nature of HMI is
specified as interactions. The semantics of this language is based on synchronous data
flows similar to Lustre that makes the process easy for formal verification and code gen-
eration. In [15], the authors propose a formal development process for designing HMI
for safety-critical systems using LIDL and S3 solver.

The project CHI+MED [13] proposes modelling in Modal Action Logic (MAL) and
proofs in PVS for developing HMI of medical systems. In [18], the authors present a
methodology to design a user interface compliant with use-related safety requirements
using formal methods. In [12], the authors propose an approach for checking the re-
quired properties of executable models of interactive software in djnn framework. The
djnn framework describes interactive components in hierarchical manner, including the
low level details such as graphics, behaviours, computations and data manipulations.

All the above approaches are all confronted with different issues like the lack of
abstraction or of formal design patterns for handling different aspects of interactive sys-
tems. Nevertheless, the main contribution of these researches and studies is to demon-
strate only parts of the interactive systems such as interaction, task analysis etc. To
our knowledge there is no work related to modelling, refinement, domain knowledge
integration and management, scenarios, task analysis together for developing interac-
tive systems. Our work is the first integrated framework for modelling and designing
interactive systems by defining different components of interactive systems. Note that
our defined language FLUID is able to model interaction behaviour, domain properties,
scenarios and tasks properties for interactive systems using a correct by construction.
To specify everything in one language provides a common understanding to the various
stockholders.

10 Conclusion

This paper presents a formal approach for developing Human Machine Interface com-
plying with ARINC 661. This development approach is centered around the pivot mod-
elling language, FLUID, which is proposed in our FORMEDICIS project for specifying
HMI requirements. A FLUID model consists of states, assumptions, expectations, nom-
inal and non nominal properties, and scenarios. A formal model can be derived from a
FLUID model for reasoning and analyzing an interactive behaviour of a system under
the given safety properties. In our work, we have used the Event-B modelling language
for producing a formal model and PetShop CASE tool for producing ICO model. We
have used MPIA case study for developing a FLUID model. Further, the FLUID model
is used for producing Event-B model and ICO model. The Event-B model is used to
check interaction behaviour considering domain properties, including safety properties,
and the ICO model is used for validating visual properties and in task analysis. More-
over, we have also used the ProB model checker tool to analyze and to validate the
developed MPIA model. The formalization and the associated proofs presented in this
work can be easily extended to other formal methods and model checkers that can be
used for modelling interactive systems.

17

Formal Development of MPIA for ARINC 661 17

As future work, our objective is to define a refinement relationship for FLUID mod-
els to get closer to an implementation. Such refinement allows us to perform formal
verification at the code level and we do not need to add any other verification approach.
Another future work is to automate the model generation process from a FLUID model,
so that a formal model can be produced and verified in any target modelling language.

Acknowledgment. This study was undertaken as part of the FORMEDICIS (FOR-
mal MEthods for the Development and the engineering of Critical Interactive Systems)
ANR-16-CE25-0007.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press, New York, NY, USA, 1st edn. (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: An open
toolset for modelling and reasoning in event-b. Int. J. Softw. Tools Technol. Transf. 12(6),
447–466 (Nov 2010)

3. Aït-Ameur, Y.: Cooperation of formal methods in an engineering based software develop-
ment process. In: Integrated Formal Methods, Second International Conference, IFM 2000,
Dagstuhl Castle, Germany, November 1-3, 2000, Proceedings. pp. 136–155 (2000)

4. Ait-Ameur, Y., Ait-Sadoune, I., Baron, M.: Etude et comparaison de scénarios de développe-
ments formels d’interfaces multi-modales fondés sur la preuve et le raffinement. In: RSTI-
Ingénierie des Systèmes d’Informations 13(2). pp. 127–155 (2008)

5. Aït-Ameur, Y., Girard, P., Jambon, F.: Using the B formal approach for incremental spec-
ification design of interactiv systems. In: Engineering for Human-Computer Interaction,
IFIP TC2/TC13 WG2.7/WG13.4 Seventh Working Conference on Engineering for Human-
Computer Interaction, September 14-18„ Heraklion, Crete, Greece. pp. 91–109 (1998)

6. ARINC 661-2: Prepared by Airlines Electronic Engineering Committee. Cockpit Display
System Interfaces to User Systems. Arinc Specification 661-2 (2005)

7. Ausbourg (d’), B., Durrieu, G., Roché, P.: Deriving a formal model of an interactive system
from its UIL description in order to verify and to test its behaviour. In: Proceedings of the
Eurographics Workshop DSV-IS’96. Namur, Belgium (June 1996)

8. Ausbourg(d’), B.: Using Model Checking for the Automatic Validation of User Interfaces
Systems. In: Markopoulos, P., Johnson, P. (eds.) Design, Specification and Verification of
Interactive Systems ’98. Eurographics, Springer (June 1998)

9. Barboni, E., Martinie, C., Navarre, D., Palanque, P.A., Winckler, M.: Bridging the gap be-
tween a behavioural formal description technique and a user interface description language:
Enhancing ICO with a graphical user interface markup language. SCP 86, 3–29 (2014)

10. Bolton, M.L., Siminiceanu, R.I., Bass, E.J.: A systematic approach to model checking human
- automation interaction using task analytic models. IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans 41(5), 961–976 (2011)

11. Campos, J.C., Harrison, M.D.: Systematic Analysis of Control Panel Interfaces Using Formal
Tools, pp. 72–85. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

12. Chatty, S., Magnaudet, M., Prun, D.: Verification of properties of interactive components
from their executable code. In: Proceedings of the 7th ACM SIGCHI Symposium on Engi-
neering Interactive Computing Systems. pp. 276–285. EICS’15, ACM, NY, USA (2015)

13. Curzon, P., Masci, P., Oladimeji, P., Rukšėnas, R., Thimbleby, H., D’Urso, E.: Human-
Computer Interaction and the Formal Certification and Assurance of Medical Devices: The
CHI+MED Project. In: 2nd Workshop on Verification and Assurance (Verisure2014), in as-
sociation with Computer-Aided Verification (CAV), Vienna Summer of Logic (2014)

18

18 N. K. Singh, Y. Aït-Ameur, D. Méry, D. Navarre, P. Palanque, M. Pantel

14. FORMEDICIS Project. https://anr.fr/Projet-ANR-16-CE25-0007
15. Ge, N., Dieumegard, A., Jenn, E., d’Ausbourg, B., Aït-Ameur, Y.: Formal development pro-

cess of safety-critical embedded human machine interface systems. In: 11th International
Symposium on Theoretical Aspects of Software Engineering, TASE’17. pp. 1–8 (2017)

16. Geniet, R., Singh, N.K.: Refinement based formal development of human-machine interface.
In: Software Technologies: Applications and Foundations - STAF 2018 Collocated Work-
shops, Toulouse, France, June 25-29, 2018, Revised Selected Papers. pp. 240–256 (2018)

17. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow programming
language Lustre. In: Proceedings of IEEE. pp. 1305–1320. No. 9 in 79 (September 1991)

18. Harrison, M.D., Masci, P., Campos, J.C., Curzon, P.: Verification of user interface software:
The example of use-related safety requirements and programmable medical devices. IEEE
Trans. Human-Machine Systems 47(6), 834–846 (2017)

19. Jambon, F.: From formal specifications to secure implementations. In: Computer-Aided De-
sign of User Interfaces III, Proceedings of the Fourth International Conference on Computer-
Aided Design of User Interfaces, May, 15-17, 2002, Valenciennes, France. pp. 51–62 (2002)

20. Lecrubier, V.: A formal language for designing, specifying and verifying critical embed-
ded human machine interfaces. Theses, INSTITUT SUPERIEUR DE L’AERONAUTIQUE
ET DE L’ESPACE (ISAE) ; UNIVERSITE DE TOULOUSE (Jun 2016), https://hal.
archives-ouvertes.fr/tel-01455466

21. Leuschel, M., Butler, M.: ProB: A Model Checker for B, pp. 855–874. LNCS, Springer
(2003)

22. Myers, B.A.: Why are human-computer interfaces difficult to design and implement? Tech.
rep., Carnegie Mellon University, Pittsburgh, PA, USA (1993)

23. Navarre, D., Bastide, R., Palanque, P.: A tool-supported design framework for safety critical
interactive systems. Interacting with Computers 15(3), 309–328 (2003)

24. Navarre, D., Palanque, P.A., Paternò, F., Santoro, C., Bastide, R.: A tool suite for integrating
task and system models through scenarios. In: 8th International Workshop on Interactive
Systems: Design, Specification, and Verification (DSV-IS). pp. 88–113 (2001)

25. Palanque, P., Bastide, R., Sengès, V.: Validating interactive system design through the verifi-
cation of formal task and system models, pp. 189–212. Springer US, Boston, MA (1996)

26. Palanque, P.A., Bastide, R.: Petri net based design of user-driven interfaces using the interac-
tive cooperative objects formalism. In: Design, Specification and Verification of Interactive
Systems, Proc. of the First International Eurographics Workshop, Italy. pp. 383–400 (1994)

27. Palanque, P.A., Ladry, J., Navarre, D., Barboni, E.: High-fidelity prototyping of interactive
systems can be formal too. In: Human-Computer Interaction. New Trends, 13th International
Conference, HCI International 2009, San Diego, CA, USA, Part I. pp. 667–676 (2009)

28. Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models, pp. 362–369. Springer US, Boston, MA (1997)

29. Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S., Elmqvist, N.: Designing the User In-
terface - Strategies for Effective Human-Computer Interaction, 6th Edition. Pearson (2016)

19

Verifying Resource Adequacy of Networked IMA
Systems at Concept Level

Rodrigo Saar de Moraes ? and Simin Nadjm-Tehrani

Dept. of Computer and Information Science
Linköping University - Sweden

{rodrigo.moraes,simin.nadjm-tehrani}@liu.se

Abstract. Complex cyber-physical systems can be difficult to analyze
for resource adequacy at the concept development stage since relevant
models are hard to create. During this period, details about the functions
to be executed or the platforms in the architecture are partially unknown.
This is especially true for Integrated Modular Avionics (IMA) Systems,
for which life-cycles span over several decades, with potential changes
to functionality in the future. To support the engineers evaluating con-
ceptual designs there is a need for tools that model resources of interest
in an abstract manner and allow analyses of changing architectures in a
modular and scalable way. This work presents a generic timed automata-
based model of a networked IMA system abstracting complex network-
ing and computational elements of an architecture, but representing the
communication needs of each application function using UPPAAL tem-
plates. The proposed model is flexible and can be modified/extended to
represent different types of network topologies and communication pat-
terns. More specifically, the different components of the IMA network,
Core Processing Modules, Network End-Systems, and Switches, are rep-
resented by different templates. The templates are then instantiated to
represent a conceptual design, and fed into a model checker to verify that
a given platform instance supports the desired system functions in terms
of network bandwidth and buffer size adequacy – in particular, whether
messages can reach their final destination on time. The work identifies
the limits of the tool used for this evaluation, but the conceptual model
can be carried over to other tools for further studies.

Keywords: Timed Automata, UPPAAL, IMA System, Conceptual Anal-
ysis, Network Resource Adequacy

1 Introduction

Modeling complex cyber-physical system (CPSs) [6] can be a challenging task,
particularly since, during the initial concept phase, architectures have to be de-
fined or reflected upon without specific knowledge or fine-grained models of the
functions to be executed or the software to be run on these platforms. Usually,

? corresponding author

20

2 R. S. de Moraes, S. Nadjm-Tehrani

details of the software, algorithms, and functions that are relevant to the de-
velopment of conceptual platforms are not known beforehand. These elements,
however, still have to be considered during the conceptualization of platform
models so that enough processing and network resources are allocated to the sys-
tem from the start. The challenges of modeling CPSs are even more pronounced
when those are Integrated Modular Avionics (IMA) Systems [11]. Typically, air-
craft implementing IMA-based systems have life-cycles that span across several
decades, making it very difficult to consider or plan for future functionality ex-
tensions, making it imperative to consider for such phenomena in the initial
concept of these architectures.

Given this motivation, the work described here presents a generic IMA-based
network model to be used during the conceptual definition of candidate IMA
platforms. The goal is to evaluate a candidate IMA architecture in terms of the
applications and functions that it must support, abstracting complex network
and computational system models. More specifically, the wish is to verify whether
the resources of a candidate platform are sufficient to support an Avionics Ap-
plication Model (AAM) that defines the resource requirements of the aircraft’s
platform. Also, the model permits the evaluation of alternative platform architec-
tures, helping with the assessment of different candidate platform architectures
that could potentially implement the AAM.

This work presents a model to evaluate the performance of IMA-oriented
computer networks, focusing on a flexible model that can be later extended to
represent different types of network architectures with different topologies and
characteristics. The initial model focuses only on the network part of the resource
adequacy problem. Other aspects such as processing capacity and schedulability
are also important for the problem, but are not considered here.

The paper is structured as follows. Section 2 provides a theoretical back-
ground to the problem. Section 3 describes the methodology and the reasoning
behind the development of the model, including the process to instantiate partic-
ular architectures. Section 4 describes the specification of high-level requirements
for the system, as well as how to query the model to obtain relevant results. The
results obtained by querying an experimental instance of an IMA architecture
are presented in Section 5. Finally, the conclusion is drawn in Section 6.

2 Background

A recent survey performed by Wang and Niu [10] studies and discusses the char-
acteristics of Distributed Integrated Modular Avionics Systems (DIMA) as well
as the main technologies, scheduling algorithms, and methods used in the concept
and design of contemporary DIMA system. In their discussion, they address the
common problems and challenges encountered by engineers and designers dur-
ing the development of these systems and highlight three key technologies that
can help in the process: mixed critical task scheduling; real-time fault-tolerant
scheduling; and real-time communication network delay analysis. The first two
are concerned with how to schedule tasks to meet timeliness and dependability.

21

Verifying Resource Adequacy of Networked IMA Systems at Concept Level 3

The delay analysis of the real-time communication network, on the other hand,
is presented as a way to ensure the real-time performance of the distributed
system.

In order to ensure that all tasks, which run on different processors, can meet
the time constraints imposed by the application, the communication delay be-
tween two processing nodes must be strictly bounded. The problem, however,
is that computing the exact worst-case delay for such networks is most of the
time impossible since realistic IMA platforms are composed of dozens of com-
munication models and hundreds of message flows. Therefore, approaches such
as network calculus (NC) [3, 4] have been proposed. These approaches compute
an exact, but often pessimistic upper bound for the delay of each message flow
on the network. This pessimistic behavior usually leads to an over-dimensioning
of the network architecture, which can quickly become expensive.

The NC technique is based on the idea of over-approximating message flows
by arrival curves and under-approximating network elements by service curves.
The worst-case delays are obtained by applying convolution and deconvolution
operators on these curves. A recent work by Li et al. [8] uses NC to try to provide
timing performance guarantees for heterogeneous multicore systems. Their work
adds a virtual channel concept to each CPU core and provides a delay analysis for
a typical switched network structure. The same NC approach is used by Soni et
al. [9] who try to quantify the pessimism of the computed upper bounds of the NC
technique when applied to an Avionics Full-Duplex Switched Ethernet (AFDX)
network. In their report, the authors compare the delays calculated using network
calculus with exact worst-case delays calculated using model checking. Their
results show that the NC approach can introduce up to 12% percent overhead
on the delay estimation due to its pessimistic tendencies.

Recent work by Xu and Yang [12] couples the concepts of Grouping Strategy
and network calculus to take into account the serialization of the messages being
transmitted through the same physical link in AFDX networks. They analyze
the existing pessimism in network calculus and then propose a rate-constrained
grouping strategy to improve the analysis of system performance. Addressing
the phenomena of burst enlargement, they present a new strategy to cope with
the pessimistic behavior of network calculus. Their approach, however, tends to
obtain optimistic estimates for the end-to-end delay that can induce some risks
to the utilization of this method in some corner cases.

Robati et al. [1], on the other hand, move away from NC and extend the Ar-
chitecture Analysis and Design Language (AADL) modeling language to model
Time-Triggered Ethernet (TTEthernet) based distributed systems. Their ap-
proach proceeds to define model transformations to enable the verification of
the AADL models using Discrete Event System Specification (DEVS) based
simulations. They present successful results for the verification of small IMA
systems, but highlight that the automation of the refinement step of the model
transformation is challenging and still requires some significant manual input
from the user.

22

4 R. S. de Moraes, S. Nadjm-Tehrani

Finally, Zhang et al. [13] present a model for verification of the real-time
constraints of IMA systems. They propose a finite-state machine mechanism to
represent the behavior model of the application and the platform. The proposed
model is based on specific requirements from the ARINC653 and ARINC664
(AFDX) standards. Their approach aims to address the claim that, while sig-
nificant work has been made in terms of communication delay, RTOS service
performance, and scheduling algorithms, these factors do not affect the system
independently and the sum of their effects need to be taken into consideration
in early development phases. Their approach, however, is tested with a small
autopilot use case and is very likely to have scalability problems as the system
grows to represent the whole aircraft.

In this work we explore the conceptual modelling of communication require-
ments and their verification using model checking with timed automata.

3 Methodology

The current model is structured in the form of a Network of Timed Automata
(NTA) which can be instantiated according to the characteristics of the archi-
tecture and applications the user wants to investigate. This approach lets the
behavior of each different component of the network model to be represented as
a Timed Automaton (TA)[2] which communicates with other TAs via broadcast
channels and shared variables to generate Networks of Timed Automata that
can be fed into a Model Checker (MC) for simulation and analysis.

The usage of NTAs allows for a flexible and modular system that can be
easily modified to accommodate new components and behaviors or be extended
through the modification of the existing TAs or the addition of some new ones.
This approach limits the modifications to the TA that implements the component
to be changed or extended, not requiring the whole system or the interactions
between the other components to be modified. NTAs also allow for flexibility
in terms of the instantiation of different candidate architectures, since the TAs
behaviors are independent of each other, only exchanging information through
the communication channels or shared variables, different architectures can be
easily implemented by instantiating different TAs, with different behaviors, for
the different components of the system as long as the interface between the com-
ponents is maintained. One can, for example, instantiate an TA representing a
given network scheduling algorithm, i.e. round-robin, to analyse a candidate ar-
chitecture and, when desired, de-instantiate this TA and switch it for another TA
representing another, i.e. priority-based, scheduling algorithm, without having
to re-model the whole system and the interaction between the components.

The current work uses the UPPAAL toolbox [7] as a resource for the design,
simulation, and verification of the NTA model. The tool provides support for the
representation of real-time systems as networks of timed automata, extending the
automata representation with integer variables and structured data types, and
providing channel synchronization mechanisms to support the communication
between the automata.

23

Verifying Resource Adequacy of Networked IMA Systems at Concept Level 5

The instantiation of an NTA model requires two different types of descriptive
documents: a Global Declaration File, in which the specifics of the system, in
this case of the avionic applications and of the IMA architecture, are described
and declared; and a Component Instantiation File that lists which components
of a library or set of TA templates will be instantiated and how these templates
relate to the information provided on the System Declaration Document. With
the information provided by these two documents, the toolbox is able to compile
an NTA instance of the IMA architecture that was described. This model is
then fed into a Model Checker which will verify if the model satisfies certain
desired properties, or, in this case, whether the instantiated architecture meets
the resource adequacy and timeliness requirements defined for the IMA system.
Finally, the SMC provides the user with results of the verification, providing
both the final status of the verification for each of the requested requirements,
as well as a trace that represents the state of the system upon non-compliance.
More details on each of these documents and the TA templates will be given in
the subsequent subsections of the document.

3.1 Overall Network Architecture

Figure 1 illustrates an IMA network system as modeled in this work. The diagram
represents a system composed of m processes, labeled T1 to Tm, allocated to n
Core Processing Modules (CPM), labeled CPM1 to CPMn. The CPMs, in turn,
are associated to n Network End-Systems (ES), labeled ES1 to ESn, that are
connected to each other through a network, represented by the dotted box on
the lower part of the diagram. The arrows in Figure 1 represent the flow of
information, or in this case exchange of messages, between the components.

Fig. 1. Diagram of a Generic network

Each Network End-System is composed of two different components, a Send-
ing End-System, responsible for forwarding the messages it receives from pro-
cesses onwards into the network, and a Receiving End-System, responsible for

24

6 R. S. de Moraes, S. Nadjm-Tehrani

delivering the messages it receives from the network to the processes. It is im-
portant to highlight that each of these two components is associated, in the NTA
model, to a different TA template. On the other hand, the ES itself, which en-
compassess both components, is not mapped to a TA, being merely a conceptual
entity in our model.

Similarly, each process is mapped to a TA model that represents its behavior.
CPMs are also just conceptual entities within the model and are not mapped to
TAs. This representation choice is due to the fact that modeling the behavior
of the CPMs themselves is not really relevant to the analysis of the network
adequacy in this work since for the current analysis only the rate in which
processes generate messages matter.

Finally, the Network Model represents the network architecture used to con-
nect different CPMs. This component is, again, merely a conceptual entity com-
posed of multiple and different TA instances depending on the type of network
or architecture being analyzed.

Figure 2 illustrates how a switched network, where n CPMs are connected
through an n-port-switch, can be instantiated. In this example, the switch is
represented by two types of TA templates: Sending Interface TAs, which are
responsible for forwarding messages to the receiving end-systems; and Switch
Core TAs, responsible for the routing and switching of the messages received from
the sending end-systems, assigning each message to the corresponding Sending
Interface.

Fig. 2. General Diagram of a Switched Network

In this model, following the interfaces provided by UPPAAL, the commu-
nication between the different Timed Automata representing the components
of the network is made using shared variables. These shared variables model

25

Verifying Resource Adequacy of Networked IMA Systems at Concept Level 7

buffers and represent the internal storage structures that exist in most of the
real physical components. This approach allows each automaton that represents
a network model to forward messages to the next node in the network by writing
the message directly on the other node’s input buffer, modeling the delivery of
a message in the receiving node. More on this behavior is discussed when the
automata for the components of the system are presented in section 3.3.

3.2 System Global Declarations

The System Global Declaration serves the purpose of describing the resource-
related part of the IMA platform and AAM being analyzed. Here, the specific
aspects of the system, such as the characterization of the end-to-end communi-
cation, the number, and the timing characteristics of the processes and of the
underlying network are set. Moreover, it is also where the declaration and ini-
tialization of the communication channels, shared variables, system constants,
and common functions take place.

Listing 1.1 shows an excerpt of our configuration file, showing the specific
part of the file where the general variables used to describe a specific IMA archi-
tecture are located, as well as a description of their meaning.The characteristics
described by these variable are specific to each architecture, detailing specific
aspects of said architecture such as the number of processes, end-systems, and
messages, as well as platform aspects such as the size of the network buffers and
the bandwidth of the network.

const int N_ES =2; // The number of end systems.
const int N_PROC = 6; // The number of processes.
const int N_MESS = 11; // The number of different
types of messages in the system.
const int SIZE_M = 16000; // The maximum size of the
messages in bytes.
const int BUFFER_SIZE = 16; // The maximum size of
network buffers in kbytes.
const int NETWORK_BD = 100; // network bandwidth in mbps/s

Listing 1.1. General System Description Variables

Listing 1.2 exemplifies the declaration of a simple process. A process is de-
scribed by a Process data structure that carries information about the worst
case execution time of the process, the period in which it should be run, the
end-system it is associated with, and the number and list of messages the pro-
cess is supposed to read and write from the network. Each Process structure also
caries a specific process ID, which will be fed to a generic process TA template
during instantiation and allows the template instantiated for each process to
access the shared data about the process they relate to.

In this case, we can see the instantiation of a process P1, characterized by
id number TID t = 1, associated with end-system ESID t = 0, that takes
maximum 7ms to run and runs each 16ms. We also see that process P1 makes

26

8 R. S. de Moraes, S. Nadjm-Tehrani

3 writes to network, being writes of message types 1, 2 and 3, and performs the
reads of two message types, 4 and 5, from the network.

//A data structure representing a process and its
charachteristics

typedef struct
{ TID_t id; //process id

time_t wcet; //process WCET
time_t period; //period of the process
ESID_t associatedES; //an identifier of the
End-System the process is associated with
NetworkWrites netWrites; //a NetworkWrites object that
lists the messages this process sends
NetworkReads netReads; //a NetworkReads object that
lists the messages this process receives

}Process;

// Definition of a Process P1
const Process P1 = {1,7000,16000,0,
{3,{1,2,3}}, {2,{4,5,NO_MESSAGE,NO_MESSAGE}}};

Listing 1.2. Process Data structure and Definition of a Process

We now go on to exemplify how the messages exchanged between processes
are defined in the context of the model. Listing 1.3 demonstrates how messages
are defined in terms of a message type id, information about the sender and
receiver processes, and the size of the message. Towards the end of the listing,
there is an example of how a 3608 bytes long message with type id MID t = 1,
that goes from process 3 to process 2, can be instantiated.

//A message element structure
typedef struct {

TID_t sender; //the id of the sender process
TID_t receiver; //the id of the receiver process
MID_t id; //the id of the message type
int [0,SIZE_M] size; //the size of the message in bytes

}Message;

//Definition of a message M1
const Message M1 = {3,2,1,3608};

Listing 1.3. Message Data structure and Definition of a Message

3.3 Timed Automata Templates

Timed Automata Templates in UPPAAL Each automaton template that
composes the final system is instantiated from a parameterized template. The
parameters for each template are replaced by arguments at the moment template
instantiations are declared. After instantiating the components, these have to be
composed into a system, which is made through a system definition.

27

Verifying Resource Adequacy of Networked IMA Systems at Concept Level 9

Conceptual Components as Timed Automata Templates In order to
instantiate and define a system similar to the ones depicted in Figures 1 and 2 a
series of templates modeling the behavior of the components of the systems have
been created. The remainder of this subsection is devoted to the presentation of
these templates. The syntax of the diagrams used on the representation of the
templates follows that of UPPAAL.

– Process Model: The Process Model is an abstraction of the application
processes’ communication needs in this work, acting as both a sink and a
source of messages depending on the location 1 the automaton finds itself
in. It has 3 different locations: the Idle location, representing the situation
in which the process is not realizing network-related activities, neither re-
ceiving nor sending messages, being idle from the perspective of the network
interface; the RetrievingMessages location, that is reached immediately after
the process leaves Idle, is where the automaton verifies which messages were
delivered to that process since the last time it ran; and the Sending location,
which models the state where the process has received all the messages it
needed to run and done its computations, after which it creates and sends
its own messages to the network before going back to Idle. In case a process
verifies it did not receive the messages it was expecting in the ValidatingIn-
put location, the process automaton communicates this error to the rest of
the system through a special error communication channel and goes back to
Idle, not going forward into the Sending location. Figure 3 depicts what this
template looks like.

Fig. 3. The Process Model Template

– Sending End-System Model: The Sending End-System Automaton is
responsible for forwarding the messages generated by one or more processes
into the network part of the system. The automaton is composed by an
Idle location, in which it waits until a request is received from a process; a
Buffering location, in which the end-system fetches and buffers the messages
from the processes upon a request being received; and a Sending location, in

1 UPPAAL term for the state in Automata

28

10 R. S. de Moraes, S. Nadjm-Tehrani

which the automaton stays while it is sending messages to other nodes in the
network. In case the end system has several messages waiting to be sent, it
will bundle the messages together as to use the whole bandwidth available on
the network by looping through the Buffering and Sending locations while
is has messages to send. The current implementation of the Sending End-
System models a FIFO message scheduling algorithm to arbitrate between
the messages of several processes. Given the structure of this template, other
scheduling approaches can be implemented if needed by changing the way
messages are buffered and sent inside the states of the automaton, which are
code that runs on the background and are not reflected on the structure of
the model. This approach allows for the extension of the template to support
multiple scheduling policies without significant modifications to the structure
of the automaton. Figure 4 depicts the Sending End System Automaton.

Fig. 4. The Sending End System Template

– Receiving End-System Model: The Receiving End-System is perhaps the
simplest automaton in the model. Its main role is to deliver the messages
that have been written to its internal buffer to the processes. This part is
performed by periodically looping through the Idle and Delivering locations
that compose this process. A graphical representation of the Receiving End-
System is shown in Figure 5.

Fig. 5. The Receiving End System Template

29

Verifying Resource Adequacy of Networked IMA Systems at Concept Level 11

– Switch Sending Interfaces: The Switch Sending Interfaces model is very
similar in behavior to the Sending End-System model, the difference being
that the first interface fetches messages from its internal buffer, which is
fed by the Router Core, whereas the latter fetches its messages from the
processes. Due to the similarity of this automaton with the Sending End-
System automaton, a graphical representation of this automaton will be
omitted.

– Switch Core: This automaton models the behavior of a network switch for-
warding engine, forwarding the messages received in its Input Buffer from the
Sending End-Systems to the correct Sending Interface associated with the
Receiving End-System each message is destined to. This automaton works
by periodically leaving the Idle location to the Fetching location, where
it fetches the next message in its input buffer. Having fetched the mes-
sage the automaton proceeds to the Routing location, in which it finds out
which Sending Interface to deliver the message to. A cycle of the automa-
ton execution ends on the Delivering location, delivering the message to
the correct Sending Interface, and returning to the Idle location by one of
two edges, depending on whether the Sending Interface buffer is full and
the MESS DROP ERROR error message has to be signaled or not. This
behavior can be seen in the automaton representation of Figure 6.

Fig. 6. The Switch Core Template

4 Requirement Specification

We begin by describing the requirements of interest in our case study.

4.1 Requirement Definition

To evaluate a candidate platform within a conceptual architecture, we need to
ascertain whether any avionics-related application(process) can ever be starved
by the network, meaning that it will not receive the data it needs to run, and also
whether any message will be lost due to lack of resources or inadequate sizing of
the network. That leads to the specification of two main high-level requirements
for the system in terms of resource adequacy and network performance:

30

12 R. S. de Moraes, S. Nadjm-Tehrani

1. No process should ever reach a state in which it needs a data and
has not yet received the data it needs - meaning that whenever a given
process needs data from a message this data should be available. The failure
to meet this requirement means that, for some reason, that specific IMA
platform configuration is not able to respect the communication deadlines
imposed by the AAM.

2. No network node should ever reach a state in messages are dropped
- this requirement means, in other words, that there should not exist a net-
work node, be it a switch, or an end-system, that continuously receives more
data than it can forward or deliver where upon it completely fills its internal
buffer. A node for which the buffer is full is very likely to get overloaded in
an operational mode.

It is important to note that, while a failure to meet requirement 2 will prob-
ably lead to a failure of requirement 1 as well, the opposite is not true. If a given
message is dropped somewhere on the network, failing to meet requirement 2, it
will never arrive at its final destination, causing a failure to meet requirement
1. This is, however, just a resource adequacy problem. A message not arriving
in time at its final destination, on the other hand, can be caused for multiple
factors, being a much broader problem related not only to resource adequacy
but also to characteristics such as the number of messages being exchanged, the
number of switches between two end-systems, and the topology of the network.
These requirements are, thus, complementary in some sense, allowing whoever
is using the model to get a better insight on where a problem with some plat-
form/architecture might be coming from.

4.2 Verifying Requirements in UPPAAL

In UPPAAL, models can be verified by creating auxiliary observer templates
that monitor whenever a requirement is violated (i.e a bad state is reached.)
Hence, two observers were created to inspect the status of the platform model
during the requirement verification process. Basically, these observers are simple
timed automata that listen to the communication channels for error signals sent
by processes or network nodes, and change their state, to an error state. Figure
7 shows what an observer listening for processes that signaled a non-compliance
to the first requirement looks like. The second observer, which listens to the
network nodes waiting for signals that indicate that a full-buffer-state has been
reached, was omitted because it looks very similar to the first observer.

Fig. 7. Process Observer Automata

31

Verifying Resource Adequacy of Networked IMA Systems at Concept Level 13

4.3 Expressing Requirements in UPPAAL

The UPPAAL model-checker tool [7] uses a simplified version of a Timed Compu-
tational Tree Logic (TCTL) [5] to express requirements over the timed automata
models. Like in traditional TCTL, the UPPAAL requirements language supports
both path formulae and state formulae. State formulae reason about individual
states, whereas path formulae reason over paths or traces in the search space of
the model. Since the goal of the IMA network model is to verify whether a given
platform is able to serve as a basis for a given AAM with adequate resources,
we have a special interest on expressing the requirements of the network model
in terms of path formulae in terms of (non) reachability of undesired states (ex-
pressed in formal terms as the safety of the model). In short we aim to verify
that no undesired or error state can ever be reached.

In the UPPAAL requirements language, given the TCTL logic and a formula
ϕ, the path formula A�ϕ express that ϕ should be true in all reachable states
of the model. This type of requirement, usually expresses the so called safety
properties, that in UPPAAL are formulated positively, e.g., something desirable
is invariantly true. The two defined requirements are, then, written as:

A � not ProcessObserver.INS DATA ERROR
A � not NodeObserver.MESS DROP ERROR

5 Model Assessment

This section presents the analysis of an abstract networking platform architec-
ture and an application characterised by a mapping to the platform. We then
formally verify the the requirements mentioned in Section 4 and discuss the find-
ings of the formal verification. We use an illustrative use case that consists of 6
processes, allocated to 3 different CPMs that communicate with each other by
means of a switched network. These 6 processes exchange a total of 11 message
types.

While a graphical representation of the architecture is depicted in Figure
8, the message graph of Figure 9 shows the direction of each of the messages
exchanged by the processes, depicting the sender and receiver of each message.
Figure 9 also outlines the message dependencies between processes, a fundamen-
tal piece of information for the verification of Requirement 1. Listing 1.4, in turn,
details the declaration of each process and message, characterizing information
such as the period of the processes, the end-system each process is associated
with, as well as the size of each one of the 11 message types with each other.

The results of the verification of two different platform instantiations for re-
quirement 1 are shown in Table 1. The first instance considers that the network
links of the candidate platform have a bandwidth of 1 Gbps; the second, rep-
resents the case in which the network bandwidth is just 1 Mbps. Table 2, on
the other hand, shows the results of a verification of requirement 2, presenting
4 different instances of the platform with different buffer sizes for the network
models.

32

14 R. S. de Moraes, S. Nadjm-Tehrani

Fig. 8. Test Case Architecture

Fig. 9. Test Case Message Graph

Analyzing the results obtained from the verification of requirement 1, it is
easy to see that, whereas the instance featuring a fast network (1Gbps band-
width) was able to respect the communication deadlines imposed by the AAM,
the instance featuring a slower network (1Mbps bandwidth) did not meet this
requirement. The result of this verification was already expected since this in-
stance was created to illustrate, given the size of the messages, the bandwidth of
the network, and the periodicity of the processes, how a bad choice of network
bandwidth could lead to a breach of requirement 1.

33

Verifying Resource Adequacy of Networked IMA Systems at Concept Level 15

Query: Req 1: Correct timing for data delivery

Instance Verification Time (s) Verification Result

1Gbps Network 1868.05 SUCCESS
1Mbps Network 34.62 FAILURE

Table 1. Requirement 1 Verification Results

Query: Req 2: No messages dropped

Instance Verification Time (s) Verification Result

8Kb Buffer Size 3.29 FAILURE
16Kb Buffer Size 3.36 FAILURE
32Kb Buffer Size 16.04 FAILURE
64Kb Buffer Size 1857.55 SUCCESS

Table 2. Requirement 2 Verification Results

Turning to the results in Table 2, the verification of requirement 2 leads to
the conclusion that the components of the network should have buffers that are
somewhere between 32kb and 64kb in size. This behavior can be explained by
the periodicity of the processes. When the buffers are smaller than 32kb the
periodicity of the processes can lead to bursts of messages that small buffers
cannot deal with.

The results also show that the verification approach performs quite well in
cases in which the requirements are not met, being able to inform the user about
resource inadequacy or network problems within seconds. When the system does
not present any problem, however, the verification of the model takes consider-
ably longer. This behaviour was already expected since proving that one of the
requirements is not met is an easier task than proving that they are met. To
prove that the requirements defined on section 4 are met, the model-checker has
to verify the whole state-space of the system to guarantee that no error state is
ever reached. On the other hand, proving that the requirements are not met is
as simple as finding one branch of the state-space of the system in which one of
the error states is reached.

More importantly, the results from this case study show that the proposed
approach suffers from a severe scalability problem. Experiments made with more
processes and messages, such as 9 nodes and 16 messages, have shown a tendency
of the model to quickly get into a state-explosion problem, using up too many
computational resources and eventually leading the model-checker to terminate
the verification with inconclusive results. Since a common IMA system can be
composed of hundreds of processes, tenths of CPMs and end systems, and thou-
sands of message classes, such behavior raises some concerns about the suitability
of the system to be used in such cases.

// ----- processes
const Process processList[N_PROC]:={

34

16 R. S. de Moraes, S. Nadjm-Tehrani

{tid[0],7000,16000,esid[0], {3,{1,2,3}}, {0,{0,0,0,0}}},
{tid[1],6000,32000,esid[0], {2,{4,5,0}}, {4,{1,11,6,7}}},
{tid[2],3000,64000,esid[1], {0,{0,0,0}}, {4,{3,4,5,9}}},
{tid[3],5000,16000,esid[2], {3,{6,7,8}}, {0,{0,0,0,0}}},
{tid[4],8000,32000,esid[1], {1,{9,0,0}}, {3,{8,10,2,0}}},
{tid[5],3000,16000,esid[2], {2,{10,11,0}}, {0,{0,0,0,0}}}};

// ----- messages
const Message mList[N_MESS]:={
{0,1,1,3608}, {0,4,2,1449}, {0,2,3,8519}, {1,2,4,1519},
{1,2,5,145}, {3,1,6,10585}, {3,1,7,550}, {3,4,8,4956},
{4,2,9,3257}, {5,4,10,5674}, {5,1,11,391}};

Listing 1.4. Processes and Messages Declaration

6 Conclusions

This work has detailed the process and methods applied to the development and
test of an integrated modular avionics platform performance evaluation model.
The developed model was supposed to be a tool to help the professionals involved
in the early conceptual phases of IMA architecture definition to evaluate and
assess different architectures or platforms for their IMA system.

Through the verification of a candidate architecture, the model is shown to
be capable of analyzing and verifying the network requirements of candidate
architecture platforms. Such functionality, however, comes with a great cost in
computational power and time even for small systems, showing an accentuated
scalability problem with the current version of the model, something that can
severely influence the usability of the solution. This leads us to the conclusion
that, while the conceptual modelling approach developed in this work seems
promising, the UPPAAL encoding of it does not seem to scale.

In conclusion, further work is needed to analyse real-life-sized IMA architec-
tures of this nature. Moreover, extensions such as the addition of new message
scheduling algorithms, creation of templates for different switches or network
modules, and the support for different network standards and topologies could
help to enrich the model and improve the value of the developed solution.

Acknowledgements

This work was supported by the Sweden’s Innovation Agency - Vinnova, as part
of the national projects on aeronautics, NFFP7, project CLASSICS (NFFP7-
04890).

References

1. A modeling and verification approach to the design of distributed ima architectures
using ttethernet. Procedia Computer Science 83, 229–236 (2016)

35

Verifying Resource Adequacy of Networked IMA Systems at Concept Level 17

2. Alur, R., Dill, D.: Automata for modeling real-time systems. In: International
Colloquium on Automata, Languages, and Programming. pp. 322–335. Springer
(1990)

3. Cruz, R.L.: A calculus for network delay. i. network elements in isolation. IEEE
Transactions on Information Theory 37(1), 114–131 (1991)

4. Cruz, R.L.: A calculus for network delay. ii. network analysis. IEEE Transactions
on Information Theory 37(1), 132–141 (1991)

5. Goldblatt, R.: Logics of time and computation, vol. 7. Center for the Study of
Language and Information Stanford (1992)

6. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical
systems: A survey. IEEE Systems Journal 9(2), 350–365 (2014)

7. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer (STTT) pp. 134–152 (1997)

8. Li, M., Zhu, G., Savaria, Y.: Delay bound analysis for heterogeneous multicore
systems using network calculus. In: IEEE Conference on Industrial Electronics
and Applications (ICIEA). pp. 1825–1830 (2018)

9. Soni, A., Li, X., Scharbarg, J., Fraboul, C.: Work in progress paper: pessimism
analysis of network calculus approach on AFDX networks. In: IEEE International
Symposium on Industrial Embedded Systems (SIES). pp. 1–4 (2017)

10. Wang, H., Niu, W.: A review on key technologies of the distributed integrated
modular avionics system. International Journal of Wireless Information Networks
25(3), 358–369 (2018)

11. Watkins, C.B.: Integrated modular avionics: managing the allocation of shared
intersystem resources. In: IEEE/AIAA Digital Avionics Systems Conference. pp.
1–12 (2006)

12. Xu, Q., Yang, X.: Performance analysis on transmission estimation for avionics
real-time system using optimized network calculus. International Journal of Aero-
nautical and Space Sciences 20(2), 506–517 (2019)

13. Zhang, K., Wu, J., Liu, C., Ali, S.S., Ren, J.: Behavior modeling on arinc653 to
support the temporal verification of conformed application design. IEEE Access 7,
23852–23863 (2019)

36

Automated Ada Code Generation from
Synchronous Dataflow Programs on Multicore:

Approach and Industrial Study *

Shenghao Yuan1, Zhibin Yang1, Jean-Paul Bodeveix2, Mamoun Filali2, Tiexin
Wang1, and Yong Zhou1

1 College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing, China

{shyuan,tiexin.wang,zhouyong}@nuaa.edu.cn, yangzhibin168@163.com
2 IRIT, Université de Toulouse, Toulouse, France

{bodeveix,filali}@irit.fr

Abstract. The code synthesis, especially the multi-task code genera-
tion, plays an important role in the implementation of the safety-critical
applications. MiniSIGNAL is a sequential/multi-task code generation
tool for the synchronous language SIGNAL. During the application of
real-world industrial case study, we find the generated programs is still
inefficient due to a shortage of the original code generation strategies.
Therefore, this paper presents a new multi-task code generation method
for SIGNAL. Starting at the level of synchronous clocked guarded ac-
tions (S-CGA) which is an intermediate language for the compilation
process of MiniSIGNAL, the transformation consists of two levels: At
the platform-independent level, transforming the S-CGA code to an ab-
stract multi-task structure (called VMT) with formal syntax and seman-
tics; At the platform-dependent level, adopting the thread pool pattern
to implement parallel Ada code generated from the VMT structure. The
approach is applied to a real-world Guidance, Navigation and Control
system to show the effectiveness of our approach.

Keywords: safety-critical systems · synchronous dataflow language ·
multi-task code generation · Ada · multi core.

1 Introduction

Safety-Critical Systems (SCSs) are widely used in the fields of avionics, space sys-
tems, and nuclear power plants: Malfunctions of SCSs can lead to accidents that
can potentially put people, environment, property, and mission in serious risks
* Supported by organization by the National Natural Science Foundation of Chi-

na (61502231); The National Key Research and Development Program of Chi-
na (2016YFB1000802); The Natural Science Foundation of Jiangsu Province
(BK20150753); The National Defense Basic Scientific Research Project under Grant
of China (JCKY2016203B011); The Fundamental Research Funds for the Central
Universities (NP2017205); the Foundation of Graduate Innovation Center in NUAA
(kfjj20181603).

37

2 SH et al.

such as environmental catastrophes and loss of lives. Currently, Model-Driven
Development(MDD) is generally accepted as a key enabler for the design of the
SCSs. For example, MDD (DO-331) and formal methods (DO-333) are vital tech-
nology supplements which are added to extend the guide of DO-178C [9]. There
are many MDD languages and approaches covering various modeling demands,
such as UML for generic modeling, SysML for system-level modeling, AADL [8]
for the architectural modeling and analysis of embedded systems, SCADE for
synchronous dataflow modeling, Modelica for multi-domain modeling.

Synchronous languages, which rely on the synchronous hypothesis, are wide-
ly adopted in the design and verification of the SCSs. For example, Airbus
has been using SCADE to develop the A380 Control and Display System [3].
There are several synchronous languages, such as ESTEREL [6], LUSTRE [17],
QUARTZ [1] and SIGNAL [4]. As a main difference from other synchronous
dataflow languages, SIGNAL is a kind of polychronous language (multi-clock),
and it naturally considers a mathematical time model, in terms of a partial-order
relation, to describe multi-clocked systems without the necessity of a global clock.
With the advent of CPUs, it is a trend that multi-core CPUs will be widely used
in the SCSs, so polychornous languages are more attractive for embedded de-
signers.

In the multi-threaded code generation scheme, the existing SIGNAL compiler
Polychrony 1 uses micro-level threading which creates a large number of threads
and equally large number of semaphores, leading to inefficiency. In [18] [19],
we propose a novel multi-task code generator for SIGNAL, called MiniSIGNAL,
which consists of the forth-end (from SIGNAL to Synchronous Clocked Guarded
Action, S-CGA) and back-end (from S-CGA to target languages). The final
purpose of MiniSIGNAL is to generate a new SIGNAL verified compiler in Coq.

When the existing MiniSIGNAL code strategies are applied for the industrial
case study, the execution efficiency of generated multi-task program is not satis-
factory because frequent task switching costs a lot (saving all registers, moving
tasks into the ready queue, reloading new tasks and updating stack data from
memory, etc.) in a multi-task environment, especially when the number of CPUs
is small. To generate more efficient target code from industrial cases, this paper
presents a new multi-task code generation method based on MiniSIGNAL. This
paper selects Ada as the target language because Ada is an explicit-concurrency
and high-safety programming language which is very popular in the SCSs, espe-
cially in the Chinese aerospace industrial field. In addition, this paper compares
the proposed approach to some closely related works (e.g.Schneider [1]) discussed
later in order to provide more empirical evidence about the usefulness of our ap-
proach and the existing works when applied in industrial settings. The main
contributions presented in the paper can be summarized as follows:

– A new approach is proposed for transforming S-CGA models to multi-task
Ada code. The transformation is divided into two parts:

• Platform-independent level. A platform-independent structure, called
Virtual Multi-Task(VMT), is defined as a common multi-task structure

1 http://www.irisa.fr/espresso/Polychrony/

38

Title Suppressed Due to Excessive Length 3

to explicitly express concurrency information, its syntax and semantics
are shown in Coq. The transformation algorithm from S-CGA to VMT
is also shown in Section 3.

• Platform-dependent level. The thread pool pattern is adopted for imple-
menting the platform-dependent parallel code. The algorithm is given
about transforming VMT structures to multi-task Ada code.

– A real-world aerospace industrial case, the Guidance, Navigation and Control
(GNC) system, is used to show the feasibility of the method presented in
the paper. This paper mainly shows three subsystems of GNC which are
suitable for modeling in SIGNAL: Attitude Determination subsystem, Orbit
Calculation subsystem and Attitude Control subsystem. The subsystems are
also used for strategies comparisons to indicate the effectiveness of various
code generation strategies when applied to industrial cases.

The rest of this paper is organized as follows. Section 2 briefly introduces SIG-
NAL and S-CGA. Section 3 presents a multi-task Ada code generation approach
which includes the platform-independent level and the platform-dependent lev-
el. Section 4 gives a real-world aerospace industrial case study. Section 5 gives
some lessons learnt and discussions. Section 6 discusses some related works and
Section 7 provides concluding remarks and plans for future work.

2 Preliminary

In this section, we first introduce some basic concepts of SIGNAL, and then give
the definition of the intermediate format S-CGA.

2.1 SIGNAL

As declared in the synchronous hypothesis, the behaviors of a reactive system
are divided into a discrete sequence of instants. At each instant, the system does
input-computation-output, which takes zero time. So a variable (called signal)
in SIGNAL is an infinite sequence, at each instant, a signal may be present with
a value or absent (denoted by ⊥). The set of instants where a signal x takes a
value is the abstract clock (denoted by x̂). Two signals are synchronous if they
are always present and absent at the same instants, which means they have the
same abstract clock.

SIGNAL provides four primitive constructs to express the relations between
signals:

– instantaneous function y := f(x1, x2, . . . , xn)
– delay y := x $ init c
– undersampling y := x when b
– deterministic merging y := x1 default x2

The instantaneous function and the delay are monoclock operators which
mean all signals involved have the same abstract clock, while the undersampling

39

4 SH et al.

and the deterministic merging are multiclock operators which mean the signals
involved may have different clocks.

SIGNAL also provides some extended constructs to express control-relate
properties by specifying clock relations explicitly, for example set operators on
clocks (union x1ˆ+x2, intersection x1ˆ*x2, difference x1ˆ-x2). But each extended
construct is equivalent to a set of primitive constructs.

In the SIGNAL language, the relations between values and the relations
between abstract clocks, of the signals, are defined as equations, and a process
consists of a set of equations. Two basic operators apply to processes, the first one
is the composition of different processes, and the other one is the local declaration
in which the scope of a signal is restricted to a process.

2.2 S-CGA

We present the intermediate representation called S-CGA which is proposed in
the MiniSIGNAL code generator.

Definition 1 (S-CGA) An S-CGA system is a set of guarded actions ⟨γ ⇒ A⟩
defined over a set of variables X. The Boolean condition γ is called the guard
and A is called the action. Intuitively, the semantics of guarded actions is that
A is executed if γ holds. Guarded actions can be of one of the following forms:

(1) γ ⇒ x = τ (immediate)

(2) γ ⇒ next (x) = τ (delayed)

(3) γ ⇒ assume (σ) (assumption)

(4) γ ⇒ read (x) (input)

(5) γ ⇒ write (x) (output)

where,

– γ and σ are Boolean conditions over the variables of X, and their clocks. For
a variable x ∈ X, we denote:

• its clock x̂,
• its initial clock init(x̂) as the clock which ticks the first time (if any)

where x̂ ticks.
– τ is an expression over X

The form (1) immediately writes the value of τ to the variable x. The form
(2) evaluates τ in the given instant but changes the value of the variable x at
its next instant of presence. The form (3) defines a constraint which has to hold
when γ is defined and true. The form (4) shows x that gets a value provided by
the environment while the form (5) indicates the environment gets a value x if
γ is defined and true. Guarded actions are composed by the parallel operator ||.

40

Title Suppressed Due to Excessive Length 5

3 Ada Code Generation Approach

Based on the existing front-end of MiniSIGNAL, the new Ada code generation
process is shown in Fig. 1, which adds two parts: Virtual Multi-Task generation
(platform-independent) and Multi-task Ada generation (platform-dependent).
The Virtual Multi-Task is defined for explicitly expressing synchronization rela-
tions derived from SIGNAL. Synchronization relations are implemented between
the tasks of VMT using the Wait/Notify mechanism. Such an abstract structure
is expected to support some purposes, such as generating simulation code (e.g.
Simulink), formal verification model (e.g. UPPAAL) and various target exe-
cutable code (e.g. C/Java/Ada) from VMT.

Fig. 1. Multi-task Ada code generation.

3.1 Dependency Analysis and Task Partition
Dependency Analysis The guarded actions have to be executed in data flow
order to avoid the read-after-write conflicts, so Data Dependency Graph (DDG)
should be constructed. DDG is a directed acyclic graph consisting of vertices
representing guarded actions and edges representing the dependencies between
the actions. The edge γ1 ⇒ A1 → γ2 ⇒ A2 expresses there exists a variable x
such that x occurs in the left-hand side of action A1 and also occurs in the guard
γ2 or in the right-hand side of action A2.
Task Partition There are different partition methods, such as the topological
sorting way [11], the vertical way [1] and the horizontal way [2]. Here we select a
more general way: The main idea is to map the guarded actions to tasks in the
target languages one by one, and to convert the read/write dependencies to the
synchronous communication between tasks.

3.2 Platform-Independent Level: VMT Generation
VMT Syntax VMT defines a set of sequential behaviors called tasks. After a
global synchronization, tasks are fired according to the wait/notify mechanism.
When all tasks have completed their tasks, the state of the system is updated
and an iteration is performed.

Definition 2 (Virtual Multi-Task (VMT)) A VMT structure is a tuple
⟨Task, Init, Next⟩, where,

41

6 SH et al.

– Task is a set of tasks (defined in the next paragraph).
– Init is an assignment action which assigns initial values to global variables

before the first run of all the tasks.
– Next is an action that updates the global variables after each iteration.

The VMT structure is defined in Coq.taskId is the set of task identifiers.
tasks associates a task definition to a taskId.
Structure VMT := {
taskId: Type; (* set of task identifiers *)
State: Type; (* internal state of the system *)
Init: State; (* initial state of a task *)
Next: State −> State;
tasks: taskId −> Task taskId State

}.

A task tk is a tuple ⟨Id, Wait, Cond, Comp, Notify⟩ where,

– Id: a String representing the identification of the task tk, such as T1.
– Wait: a set of tasks’Id, of which notification is waited for by tk before

starting its execution. tk is fired if all tasks waited by tk has been executed.
– Cond: a Boolean condition expression. If the expression is true then the

statement in Comp can be executed, otherwise the statement is skipped.
– Comp: a sequential statement including input, computation or output.
– Notify: a set of tasks’Id that must be notified once tk has been executed.

Wait and Notify can be used to synchronize tasks.

The Coq definition of a task is shown below, where Cond is represented as
a predicate over the state, and Comp as a function from state to state.
Structure Task Id State:= {
Wait: Ensemble Id;
Cond: State −> Prop;
Comp: forall st: State, Guard st −> State;
Notify: Ensemble Id;

}.

VMT Semantics The semantics of a VMT is defined by a transition system
(TS) which is a pair ⟨S, →⟩ where S is a set of states and →⊆ S × S is a set
of state transitions. In order to give the semantics of a VMT, we first need to
define its state. It contains three parts:

– vmState: the user state as introduced in the VMT, which is shared and
updated by all the tasks;

– ctState: the control state of each task, which takes three values: csWait,
csReady and csEnd;

– notified: the set of notifications currently received.

The Coq representation expresses the structure of transition systems and
inductively defines four kinds of transitions:

– TrWait(id): if id is in csWait and the set of waited tasks of id is included in
its notified set, id goes to csReady.

42

Title Suppressed Due to Excessive Length 7

– TrComp(id): if id is in csReady and its condition is satisfied, its action is
executed updating the VMT state, notifications are sent and id goes to
csEnd.

– TrNoComp(id): if id is in csReady and its condition is not satisfied, notifica-
tions are sent and id goes to csEnd.

– TrNext(id): if all tasks are in csReady, they are all put in csWait and the
Next VMT transition is executed.

Finally, the semantics of VMT as a TS is defined in Coq by a one-to-one
mapping. For more details, please referring to https://github.com/nuaaysh/
VMTinCoq/blob/master/VMT.v.

Structure TS := {
LState: Type;
LInit: LState;
LTrans: LState −> LState −> Prop

}.

Inductive trans (vmt:VMT) (st1: state vmt) (st2: state vmt): Prop :=
trWait: forall id, TrWait vmt st1 st2 id −> trans vmt st1 st2
| trComp: forall id, TrComp vmt st1 st2 id −> trans vmt st1 st2
| trNoComp: forall id, TrNoComp vmt st1 st2 id −> trans vmt st1 st2
| trNext: TrNext vmt st1 st2 −> trans vmt st1 st2.

Definition VMT2TS (vmt: VMT) := {|
LState := state vmt;
LInit := mk_state _ (Init vmt) (fun _ => csWait) (fun _ => Empty_set _);
LTrans := trans vmt

|}.

Remark: The purpose of the introduction of VMT is not to define a new
language but to provide a common multi-tasking structure used as a target for
the compilation of synchronous languages. Thus, we do not show the coq rep-
resentations of some concepts (such as variables, data type and data structure)
which are derived from the source SIGNAL specifications.

S-CGA2VMT VMT can be structurally translated from S-CGA and DDG by
generating each element separately, as shown in Algorithm. 1. The algorithm first
generates the Init field by the initial clock of S-CGA (line 02) and the Next
field by the delay actions (line 03). Each task is then produced from vertices
of the DDG (line 04 - line 16): For each vertex (i.e. a guarded action), the
corresponding task’Id depends on the place where the guarded action appears
in S-CGA specifications (line 05); the Guard field is generated from the guard
of the guarded action (line 06); the Comp field is generated from the action
of the guarded action (line 07); the Wait and Notify are generated according
to two rules: For each edge whose ending vertex is the current vertex, their
starting vertices are added to the Wait (line 09 - line 10); Likewise, for each
edge whose starting vertex is the current vertex, their ending vertices are added
to the Notify (line 11 - line 12). Then the generated task is added to the Task
field of VMT (line 15). In addition, the algorithm implicitly includes the idea of
the task partition method.

43

8 SH et al.

Algorithm 1 S-CGA2VMT.
Input: S − CGA, DDG
Output: genV MT
1: procedure gen_VMT:
2: genV MT.Init ← getInit(S − CGA); //Init
3: genV MT.Next ← getNext(S − CGA); //Next
4: For each vi ∈ DDG do //Task
5: ti.Id← getId(DDG, vi);
6: ti.Guard← getGuard(DDG, vi);
7: ti.Comp← getComp(DDG, vi);
8: For each ej ∈ DDG do //Task
9: If ej .end_vertex() = vi then

10: ti.Wait← addWait(ej .start_vertex());
11: Else If ej .start_vertex() = vi then
12: ti.Notify ← addNotify(ej .end_vertex);
13: end If
14: end For
15: genV MT.Task ← addTask(ti);
16: end For
17: return genV MT ;
18: end procedure

3.3 Platform-Dependent Level: Ada Code Generation

There are quite easy ways to generate multi-task Ada code. For example, we
could associate one Ada task to each DDG node and use the Ada rendezvous
mechanism or protected objects to control race conditions. However, the gener-
ated code would be inefficient as it would contain too many tasks. Therefore, in
this section, we have chosen another way to generate Ada code.

Fig. 2. JobQueue-Workers.

We have chosen the thread pool pattern to implement the parallel computa-
tion of DDG (Fig. 2): a JobQueue that stores all ready jobs (i.e. procedures in
Ada), and workers that get jobs from the head of the queue and execute them
in parallel on separate cores. After one jobs is completed, all waiting jobs that
depend on the job are put in the tail of the queue by the related worker.

44

Title Suppressed Due to Excessive Length 9

Following the code generation principle [4]. The top-level structure of gener-
ated Ada code is an infinite loop of elementary iterations: the main program calls
the init function, then keeps calling the tasks function. Once the tasks function
is completed, the next function is called before next calling the tasks function.

We first define a JobQueue protected type offering two operations: put and
get which allow adding a ask to the queue and extracting a job to the queue
provided it is not empty. Concurrent calls to these entries will be sequentialized
by the protected object.
type job is access procedure;
type index is mod M; −− M is the size of the queue
type todolist is array (index) of job;
protected JobQueue is

entry put(a:in job);
entry get(a:out job);

private
todo : todolist := (others => null);
head : index := 0;
tail : index := 0;
count : integer range 0..M := 0;

end JobQueue;

A worker is bound to a specific CPU and makes an infinite loop: extracting
a job from the queue and executing it.
task type worker (N : CPU_Range) with CPU => N is
end worker;
task body worker is

a:job;
begin

loop
JobQueue.get(a);
a.all;

end loop;
end worker;
worker1 : worker(1);
...

To implement the Wait/Notify mechanism, a counter should be defined with
a protected type. each job has one counter with an initial value, which is the
number of jobs it depends on. When one of them is completed, the value decreases
by 1 (i.e. calling the procedure decr once). If the return value of decr is true,
then the job can be executed.
protected type counter(init: integer := 1) is

procedure decr(z: out boolean);
private
c:integer := init;

end counter;

The other transformations from VMT to Ada are trivial: The init function
generated from Init is defined in the program body of the main, each task of
VMT is mapped to a procedure (or job). The procedure next generated from
Next is fired when all jobs have already been completed. It updates memory for
the next time step.
c_next : counter(5); −− wait the five terminal jobs
procedure next is

rdy : boolean;

45

10 SH et al.

begin
c_next.decr(rdy);
if (not rdy) then return; end if;
−− next field: update memory for next time step
−− restart running
JobQueue.put(t01`Access);
−−t02.. t15
JobQueue.put(t16`Access);
end if;

end next;
−− Main procedure
begin

−− init function: initialize memory
−− start running
JobQueue.put(t01`Access);
−−t02.. t15
JobQueue.put(t16`Access);

end Main;

4 Industrial Case Study

The Guidance, Navigation and Control (GNC) system is a core system support-
ing orbiting operations of spacecrafts, which undertakes the tasks of determining
and controlling spacecraft attitude and orbit. For such a complex embedded sys-
tem, we use AADL to model the complex hierarchical architecture of GNC, adopt
AADL Behavior Annex to describe the components involved many control flow
information, and use SIGNAL model to express the components involving a large
amount of dataflow computation. SIGNAL models are encapsulated in AADL
models by using the AADL extension mechanism based on property sets. In this
paper, we select three subsystems involved SIGNAL models as study cases.

– CASE_A: Data Processing of Sun Sensor. The subsystem mainly performs
the computation about data processing according to the data received from
sun sensors.

– CASE_B: Computation of Orbit Elements. The subsystem is used to derive
orbital elements at a particular time according to the system clock and the
GPS data.

– CASE_C: Eliminate Initial Deviation. The subsystem eliminates the angular
rate of attitude generated by the separation of satellites from launch vehicles
by calling some three-axis attitude control algorithms of spacecraft.

The statistical data of Ada code generation (three cases) is shown in Table. 1.
Table 1. Statistical data of generated code of three cases.

Case Task Number Synchronous Communication
(Number of dependencies edge)

Size of Ada code (line)

CASE_A 66 71 1200+
CASE_B 56 84 1100+
CASE_C 25 35 700+

In particular, the Ada code generation method is illustrated by the CASE_A.

46

Title Suppressed Due to Excessive Length 11

4.1 Code generation of Data Processing of Sun Sensor

The CASE_A involves two kinds hardware devices: Three sun sensors of the
Satellite (Sa, Sb, Sc) and a sun sensor of the Solar Array (SA), each sun sensor
has four batteries. The CASE_A receives the input data from the hardware
devices, performs the data processing (including 4 natural parallel sub-processes)
and sends the results to other subsystems (e.g. Data Processing of Star Sensor).

The main requirement of CASE_A consists of:

– Req1.1: Converting the source code of the sensors (Sa, Sb, Sc) to the cor-
responding voltage value.

– Req1.2: Computing the voltage value of four batteries of each sensor, if a
sensor doesn’t satisfy the related constraint, resetting the solar angle to zero,
otherwise calculating the solar angle.

– Req1.3: Computing the filter of each solar angle by the filter algorithms.
– Req1.4: Using the data from two sensors (Sb and Sc) to calculate the pro-

jection of the sun vector in the satellite celestial coordinate system.
– Req2.1: Converting the source code of the sensor (SA) to the corresponding

voltage value.
– Req2.2: Calculating the solar angle of the solar array.
– Req2.3: Computing the filter of the solar angle.

Fig. 3 illustrates the process of translating synchronous specifications to
multi-task Ada code. Starting with the set of guarded actions generation by
the MiniSIGNAL tool (a), the data dependency graph (b) is constructed by
the read/write dependencies. Following the transformation algorithm, the VMT
structure (c) is generated from the S-CGA code and the graph. Finally, The
generated Ada code (e.g. task36) is shown in (d).

4.2 Strategies Comparisons

The main purpose of the multi-core experiment is that compares the execution
time of generated Ada programs using different code generation strategies:

– seq(benchmark): Sequential code generation from MiniSIGNAL.
– basic: Multi-task code generation from the original MiniSIGNAL (Semaphores).
– jobqueue: Multi-task code using thread pool pattern mentioned in this paper.
– Schneider: Multi-task code using the vertical task partition method [1].

The strategies seq and basic are proposed in the [18] and [19]. The link
(https://github.com/nuaaysh/vSIGNAL/tree/master/Example/GNC/Schneider)
explains the Schneider’s code generation strategy using the CASE_A.

The experiment environment includes: windows 10 64-bit operation system,
8-cores i7-7700 CPU 3.600GHz, 16G RAM, Ada2012 and the IDE of Ada (GPS
6.2). The benchmark is the execution result of the sequential Ada code generated
from MiniSIGNAL. Furthermore, the number of CPUs is statically set to 1, 2,
4 and 8, respectively.

47

12 SH et al.

Fig. 3. The transformation process from S-CGA to Ada (CASE_A).

48

Title Suppressed Due to Excessive Length 13

Fig. 4 shows the experiment results of the three GNC subsystems (CASE_-
A/B/C). In the figure, the abscissa is the number of CPUs, the ordinate is the
execution time (the average value of executing 1000 times). The average time
shows the execution efficiency of generated Ada code using different generation
strategies. For same number of CPUs, the efficiency of the jobqueue-style Ada
code is best, followed by the Schneider’method. The original MiniSIGNAL strat-
egy is inefficient because it produces lots of task switching which may take much
time to save registers, reload stack from memory, etc. And the jobqueue-style is
efficient because tasks of VMT are mapped to jobs and Ada tasks are created
once for all and mapped to cores, there is no task switch as a core always runs
its tasks. In addition, when there is only one/two CPUs, the results of origi-
nal/Schneider’s method are even worse than the one of the sequential method, a
potential reason is that the complex task communication leads to some ‘conflicts‘
within one CPU (or between two CPUs).

Fig. 4. The experiment results of CASE_A/B/C on multi-core

In summary, the following conclusions are drawn from the experimentations:

– Given a code generation strategy(except the sequential one), there is a pos-
itive correlation between the CPUs’ number and the execution efficiency.

– The jobqueue-style strategy significantly improves the execution efficiency
of the target program (comparing with the other two strategies).

4.3 Threat to Validity
To reduce possible threat on validity, we communicated with industry partners
iteratively to obtain more information and tried to make the case more real.

49

14 SH et al.

Even though, we still find some internal and external factors that may influence
the validity of the Ada code generation approach for SIGNAL.

– Internal Threat. The code style is a potential factor to affect the execution
efficiency of generated programs, for example, too many global variables
presented in the computation of tasks procedure a lot of shared-memory
accesses. A solution is that each task declares some local variables which
are used to replace the occurs of the global variables. Each modified task
does Input (assigning the values of the global variables to the correspond-
ing local variables) - Computation (performing the computation only using
local variables) - Output (assigning the values of the local variables to the
corresponding global variables).
It is interesting to remark that although the concurrency pattern we have
used is basically the “producer-consumer” one, we have to be careful with
respect to the size of the buffer. Actually, if the buffer size is too small, the
following deadlock can occur: all busy workers cannot terminate because the
buffer is currently full and consequently cannot release their currently held
slot. In order to avoid such a situation, the buffer should be sized at least to
the width of the underlying dependency relation partial order.

– External Threat. The efficiency of multi-task Ada code generation method
for SIGNAL also depends on selected systems. In fact, we find the method is
suitable for the radar subsystem and GNC, because these systems natural-
ly contain many parallel computation (e.g. the radar subsystem has many
modules to capture different objects), while the multi-core experiment re-
sults aren’t very well when considering the rocket launch control subsystem
because the subsystem has too much synchronous communication between
tasks. Therefore, a system with less synchronous communication consump-
tion is better for using the method mentioned in the paper.

5 Lessons Learnt and Discussions

During the collaboration with our industrial partner for devising the methodol-
ogy and conducting the industrial case study, we learned the following lessons
and identified some challenges when applying the multi-task Ada code genera-
tion methodology in real industrial contexts.

In the safety-critical domain, a number of standards(e.g. DO-178B/C for
avionics, ISO 26262 for automotive systems and CENELEC EN 50128 for railway
systems, etc.) are recommended to be followed when using MDD languages/ap-
proaches to develop the safety-critical systems/software and many MDD lan-
guages and approaches. In particular, Chinese aerospace industry is accustomed
to constructing complex embedded systems with different levels of modeling
languages, such as using SysML to construct system-level information, adopt-
ing AADL to model architectural information and using Synchronous languages
(e.g. SCADE) to expressing platform-independent functional information, etc. In
addition, our industry partners pay more attention on the multi-task code gen-

50

Title Suppressed Due to Excessive Length 15

eration methods involved these modeling languages, because the computation
performance of mutli-core is quite attractive for their embedded designers.

Although we use a basic task partition method in the paper, our method can
be adopted for a multi-task code generation framework to integrate more task
partition methods or optimization strategies for the purpose of higher efficiency.
For example, the optimized results using a merging partitions’ strategy [19]
(opt) is better than the one without optimization (no_opt) in Table. 2. We are
carrying out research about the framework, some special methods/strategies may
request some modifications of VMT, for example, an additional structure may
be necessary to express the pipeline mechanism when integrating the horizontal
partition method [2].

Table 2. The results of the original (no_opt)/optimized (opt) program for three cases.

CASE Category Task
Number

Synchronous
Communication

Execution Time (ms)
1-cores 2-cores 4-cores 8-cores

CASE_A no_opt 66 71 8.90 4.60 2.40 1.52
opt 45 50 8.76 4.56 2.35 1.51

CASE_B no_opt 56 84 9.51 5.55 3.58 3.37
opt 44 72 9.47 5.42 3.48 3.21

CASE_C no_opt 25 35 4.97 2.51 1.70 1.56
opt 21 31 4.97 2.51 1.68 1.49

6 Related Work

Many tools/compilers for synchronous languages have been proposed to design
the safety-critical applications, such as Esterelv5_922 for generating C-code
or hardware from Esterel code, SCADE for generating C/Ada-code from Lus-
tre specifications, Averest 3 for generating C/Java/SystemC/VHDL-code from
Quartz programs, and Polychrony for generating C/Java from Signal code. With
the advent of multi-core processors, automated synthesis of multi-threaded code
from synchronous models has gradually become a hotspot of research.

D. Baudisch et al [1] [2]. propose two synthesis procedures generating multi-
threaded OpenMP-baded C code from QUARTZ by vertical/horizontal parti-
tioning respectively.

F. Krebs et al [13] provide a framework to convert RVC-CAL (a dataflow
language) specification to SYCL or OpenCL based code, which supports to
parallelise both synchronous and non-synchronous dataflow. In [15], they also
considers both the coarse-grained (task-parallel) execution of actors using mul-
tithreading and the fine-grained (data-parallel) execution of their actions using
SYCL or OpenCL.

J.L. Colaço et al [7] present an approach that first generates a Kaph process
network(KPN) from SCADE models with annotations that no not affect the se-
mantics but tells the compiler to generate independent tasks and then generates
a target-specific code.
2 http://www-sop.inria.fr/esterel.org/files/Html/Downloads/Downloads.htm
3 http://www.averest.org/

51

16 SH et al.

G. Giannopoulou et al [10] propose a design flow covering specification to
correct-by-construction implementation for mixed-criticality systems running on
the Kalray MPPAr-256 many-core platform.

J. Souyris et al [17] propose the solutions for automatic parallel code genera-
tion from Lustre/Heptagon models with no-functional specification (e.g. period).

Z. Li et al [14] present the transformation from SystemJ code to implemen-
tation on two types of time-predictable cores, the evolutionary algorithm is used
to evaluate multi-core scheduling solution for finding guaranteed reaction time
of real-time synchronous programs for multi-core targets.

In terms of multi-threaded code generation for SIGNAL, the report [4] de-
scribes multi-threaded code generation strategies available in the Polychrony
toolset, including clustered code generation with static and dynamic scheduling,
distributed code generation. B. A. Jose et al. [12] propose a process-oriented
and non-invasive multi-threaded code generation using the sequential code gen-
erators in Polychrony and separately synthesize some programming glue. Our
previous works [19] [18] present a sequential/multi-task C/Java code genera-
tor for SIGNAL. Comparing with [19] [18], this paper focuses on improving the
efficiency of target code when applied to real-world aerospace industrial cases.

7 Conclusion and Future Work
Synchronous languages are widely adopted for the design and verification of
SCSs. With the advent of multi-core processors, multi-task code generation for
synchronous languages has become a trend. MiniSIGNAL is a code generation
tool for SIGNAL, which supports both sequential and multi-task target code.
However the generated code is still inefficient when we apply the tool to the real-
world aerospace industrial cases. Therefore, this paper presents a new method for
generating multi-task jobqueue-style Ada code from synchronous specifications.
Our method first generates a platform-independent multi-task structure (VMT)
from S-CGA models, then generates target Ada code with the jobqueue pattern
from VMT. The industrial case study has shown that the approach is feasible.

For future work, we would like to integrate more multi-task code generation
strategies (e.g. [2], [7] and [13]) in order to provide more empirical evidence
about some interesting topics like the usefulness and the effectiveness when ap-
plied to real-world industrial applications. In addition, the adoption of automat-
ic code generation techniques for safety-critical applications requires the formal
verification of the approach. For example, two research teams (Vélus [5] and
L2C [16]) are carrying out the verified sequential compilation of Lustre in Coq,
respectively. We are currently working on the proof of semantics preservation
of MiniSIGNAL, the verification details of the whole code generator will be the
subject of a future communication.

References
1. Baudisch, D., Brandt, J., Schneider, K.: Multithreaded code from synchronous

programs: Extracting independent threads for openmp. In: Design, Automation &
Test in Europe Conference & Exhibition (DATE 2010). pp. 949–952. IEEE (2010)

52

Title Suppressed Due to Excessive Length 17

2. Baudisch, D., Brandt, J., Schneider, K.: Multithreaded code from synchronous
programs: Generating software pipelines for openmp. In: MBMV. pp. 11–20 (2010)

3. Berry, G.: Synchronous design and verification of critical embedded systems using
scade and esterel. Lecture Notes in Computer Science 4916, 2–2 (2008)

4. Besnard, L., Gautier, T., Talpin, J.P.: Code generation strategies in the Polychrony
environment. Research Report RR-6894, INRIA (2009)

5. Bourke, T., Brun, L., Dagand, P.E., Leroy, X., Pouzet, M., Rieg, L.: A Formally
Verified Compiler for Lustre. In: 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, Barcelone, Spain (Jun 2017)

6. Boussinot, F., De Simone, R.: The esterel language. Proceedings of the IEEE 79(9),
1293–1304 (1991)

7. Colaço, J.L., Pagano, B., Pasteur, C., Pouzet, M.: Scade 6: from a kahn semantics
to a kahn implementation for multicore. In: 2018 Forum on Specification & Design
Languages (FDL). pp. 5–16. IEEE (2018)

8. Feiler, P.H., Gluch, D.P.: Model-based engineering with aadl: An introduction to
the sae architecture analysis & design language. Pearson Schweiz Ag (2013)

9. Ferrell, T.K., Ferrell, U.D.: Rtca do-178c/eurocae ed-12c. Digital Avionics Hand-
book (2017)

10. Giannopoulou, G., Poplavko, P., Socci, D., Huang, P., Stoimenov, N., Bourgos, P.,
Thiele, L., Bozga, M., Bensalem, S., Girbal, S., et al.: Dol-bip-critical: a tool chain
for rigorous design and implementation of mixed-criticality multi-core systems.
Design Automation for Embedded Systems 22(1-2), 141–181 (2018)

11. Hu, K., Zhang, T., Shang, L., Yang, Z., Talpin, J.P.: Parallel code generation from
synchronous specification. Journal of Software 28, 1–15 (2017)

12. Jose, B.A., Patel, H.D., Shukla, S.K., Talpin, J.P.: Generating multi-threaded code
from polychronous specifications. Electronic Notes in Theoretical Computer Sci-
ence 238(1), 57–69 (2009)

13. Krebs, F.: A Translation Framework from RVC-CAL Dataflow Programs to Open-
CL/SYCL based Implementations. Master’s thesis, Department of Computer Sci-
ence, University of Kaiserslautern, Germany (January 2019), master

14. Li, Z., Park, H., Malik, A., Kevin, I., Wang, K., Salcic, Z., Kuzmin, B., Glaß,
M., Teich, J.: Using design space exploration for finding schedules with guaran-
teed reaction times of synchronous programs on multi-core architecture. Journal
of Systems Architecture 74, 30–45 (2017)

15. Rafique, O., Krebs, F., Schneider, K.: Generating efficient parallel code from the
RVC-CAL dataflow language. In: Euromicro Conference on Digital System Design
(DSD). IEEE Computer Society, Kallithea, Chalkidiki, Greece (2019)

16. Shi, G., Zhang, Y., Shang, S., Wang, S., Dong, Y., Yew, P.C.: A formally verified
transformation to unify multiple nested clocks for a lustre-like language. Science
China Information Sciences 62(1), 12801 (2019)

17. Souyris, J., Didier, K., Potop, D., Iooss, G., Bourke, T., Cohen, A., Pouzet, M.:
Automatic parallelization from lustre models in avionics. In: ERTS2 2018-9th Eu-
ropean Congress Embedded Real-Time Software and Systems. pp. 1–4 (2018)

18. Yang, Z., Bodeveix, J.P., Filali, M.: Towards a simple and safe objective caml
compiling framework for the synchronous language signal. Frontiers of Computer
Science 13(4), 715–734 (Aug 2019)

19. Yang, Z., Bodeveix, J.P., Filali, M., Hu, K., Zhao, Y., Ma, D.: Towards a verified
compiler prototype for the synchronous language signal. Frontiers of Computer
Science 10(1), 37–53 (2016)

53

POP: A Tuning Assistant for Mixed-Precision
Floating-Point Computations

Dorra Ben Khalifa1, Matthieu Martel1,2, and Assalé Adjé1

1 University of Perpignan, LAMPS laboratory, 52 Av. P. Alduy, Perpignan, France
2 Numalis, Cap Omega, Rond-point Benjamin Franklin, Montpellier, France
{dorra.ben-khalifa, matthieu.martel, assale.adje}@univ-perp.fr

Abstract. In this article, we describe a static program analysis to de-
termine the lowest floating-point precisions on inputs and intermediate
results that guarantees a desired accuracy of the output values. A com-
mon practice used by developers without advanced training in computer
arithmetic consists in using the highest precision available in hardware
(double precision on most CPU’s) which can be exorbitant in terms of en-
ergy consumption, memory traffic, and bandwidth capacity. To overcome
this difficulty, we propose a new precision tuning tool for the floating-
point programs integrating a static forward and backward analysis, done
by abstract interpretation. Next, our analysis will be expressed as a set
of linear constraints easily checked by an SMT solver.

Keywords: Floating-point arithmetic · mixed precision · forward and
backward error analysis · constraints generation · SMT solver

1 Introduction

With the wide availability of processors with hardware floating-point units, many
current critical applications, such as the critical control command systems for au-
tomotive, aeronautic, space, etc., which have stringent correctness requirements
and whose failures have catastrophic consequences that endanger human life [1]
[9], rely heavily on floating-point operations. Without any extensive background
in numerical accuracy and computer arithmetic, developers tend to use the high-
est precision available in hardware (usually double precision). Despite the fact
that the results will be more accurate, this increases significantly the application
runtime, bandwidth capacity and the memory and energy consumption of the
system. In fact, we denote by the term precision the amount of information used
to represent a value while the term accuracy denotes how close a floating-point
computation comes to the real value. The challenge is to use no more precision
than needed wherever possible without compromising overall accuracy (using
a too low precision for a given algorithm and data set leads to inaccurate re-
sults). To overcome the problem of determining the accuracy of floating-point
computations, many efforts have been done in automating the choice of the best
precision by dynamic or static methods [5] [10] [15] [16] but they differ strongly
in their way of accuracy determination. In this article, we are interested in the

54

2 Ben Khalifa et al.

problem of determining the minimal precision on the inputs and the interme-
diary results of a program performing floating-point computations in order to
get a desired accuracy on the outputs. Often in these programs, it is possible to
reduce the floating-point precision of certain variables in order to increase perfor-
mance, for example, the throughput of single-precision floating-point operations
is twice that of double-precision operations. Also, the proposed tool in this ar-
ticle aims to apply the mixed-precision on the floating-point programs formats.
Mixed-precision computing [10] is an approach to combine different precisions
for different floating-point variables (contrarily to the uniform precision). Our
approach combines a forward and a backward error analysis which are two pop-
ular paradigms of error analysis, done by abstract interpretations [3]. In fact,
the forward analysis is classical. It examines how errors are magnified by each
operation aiming to determine the accuracy on the results [11]. Next, a user
requirement is given denoting the final accuracy wanted on some control points
of the outputs. By taking in consideration the user assertions and the results of
the forward analysis, the backward analysis is a complementary approach that
starts with the computed answer to determine the exact floating-point input that
would produce it in order to satisfy the desired accuracy. As could be expected,
the forward and backward analysis can be handled iteratively to refine the re-
sults until a fixed-point is reached. Next, these forward and backward transfer
functions are expressed as a set of linear constraints made of propositional logic
formulas and relations between integer elements only. After, these constraints
will be easily checked by an SMT solver (Z3 is used in practice [7]).
The main contributions of this article are the following. First, we introduce re-
finements of the automated approach based on a static forward and backward
analysis done in [11]. This approach will be explained in details specially for the
cases of addition, the multiplication and the subtraction arithmetic expressions.
Furthermore, our contribution revolves around the definition of the function ι,
defined in [11] and redefined further in this work (see Figure 2). The function
ι is equivalent to the carry bit that can occur throughout floating-point com-
putations (generally ι = 1). Intuitively, a too conservative static analysis would
consider that a carry can be propagated at each operation, which corresponds
to ι = 1. This function becomes very costly if we perform several computations
at a time and therefore the errors would be considerable. It is then crucial to use
the most precise function ι. This is why, we reexamine in this work this function
by sorting out the different cases where this function might be equal to 1 or 0:
difference in magnitude of two floating-point numbers and the superposition of
the ulp and the ufp, defined in Section 3.1, of these two numbers relative to each
other. After that, the previous analysis will be expressed as a set of propositional
formulas on linear constraints between integer variables only (checked by Z3).
The transformed program is guaranteed to use variables of lower precision with
a minimal number of bits than the original program. Second, we present the
steps of construction of our new tool, POP, which executes and evaluates any
kind of programs with respect to our grammar of a simple imperative language
and including the implementation of the proposed approach. Also, we present

55

POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations 3

some experimental results showing the efficiency of our mixed-precision tool in
determining the minimal precision required.
The rest of this article is organized as follows. Section 2 introduces briefly some
basic concepts related to the floating-point arithmetic and the related work of
some existing precision tuning tools and we finish by introducing the overview of
our approach. Section 3 deals with the forward and backward static error analysis
by constraints generation with some examples. The implementation of our tool
and the constraints resolution are presented in Section 4 and an experimental
results are given in Section 5 before concluding in Section 6.

2 Overview

To better explain what POP does, a motivating example of a floating-point pro-
gram is given in Figure 1 which implements a simple scalar product of two vec-
tors x and y presented with different magnitude of small and large floating-point
values. For the vectors x and y, the variable values belong to [1.0, 2.0], [10.0, 15.0]
and [100.0, 110.0] for vector x and [100.0, 110.0], [5.0, 10.0] and [450.0, 500.0] for
vector y, respectively. In this example, we suppose that all variables are in dou-
ble precision before analysis (original program in the left hand side of Figure
1) and that a range determination is performed by dynamic analysis on these
variables to make sure that no overflow can arise. We generate at each node of
our program syntactic tree a unique control point in order to determine easily
the final accuracy, after the forward and backward analysis, as shown on the left
side of Figure 1. It is conceivable that our program contains several annotations.
First, for example on the left hand side of Figure 1, the variables x1 and y1 are
initialized to the abstract values [1.0, 2.0] and [10.0, 15.0] (in double precision)
respectively, annotated with their control points thanks to the following annota-

tions x
|1|
1 = [1.0, 2.0]

|0|
and y

|3|
1 = [10.0, 15.0]

|2|
. As well, we have the statement

require accuracy(v, 23)|40|

which informs the system that the user wants to turn on variable v to the
simple precision at this control point. As a consequence, the minimal precision
needed for the inputs and intermediary results satisfying the user assertion is
observed on the right side of Figure 1. For example, the variables x1 passed
from the double into float precision thanks to the annotation x

]21
1 = [1.0, 2.0]]22

(a floating-point number in single precision has 22 accurate digits). The results
obtained show that POP, for present, automates precision tuning and propagates
the user requirement along the program inputs and intermediary results.

3 Preliminary Notions

This section provides some background on the IEEE754 Standard of floating-
point arithmetic, formats, rounding modes, errors and the ufp and ulp functions.
Noting that several definitions of ulp exist in literature [12].

56

4 Ben Khalifa et al.

x
|1|
1 = [1.0, 2.0]|0|;

y
|3|
1 = [10.0, 15.0]|2|;

z
|5|
1 = [100.0, 110.0]|4|;

x
|7|
2 = [100.0, 110.0]|6|;

y
|9|
2 = [5.0, 10.0]|8|;

z
|11|
2 = [450.0, 500.0]|10|;

v
|17|
1 = x

|13|
1 ∗|16| x|15|2 ;

v
|23|
2 = y

|19|
1 ∗|22| y|21|2 ;

v
|29|
3 = z

|25|
1 ∗|28| z|27|2 ;

v|38| = v
|31|
1 +|37| v|33|2 +|36| v|35|3 ;

require accuracy(v, 23)|40|

POP−−−→
Tool

x
#21
1 = [1.0, 2.0]#22;

y
#14
1 = [10, 15]#12;

z
#4
1 = [100.0, 110.0]#3;

x
#21
2 = [100.0, 110.0]#22;

y
#14
2 = [5.0, 10.0]#12;

z
#4
2 = [450.0, 500.0]#3;

v
#23
1 = x1 ∗#23 x2;

v
#15
2 = y1 ∗#14 y2;

v
#6
3 = z1 ∗#5 z2;

v#23 = v1 +#23 v2 +#14 v3;

require accuracy(v, 23)#23

Fig. 1: Simple scalar product of two vectors program. The program on the left
designs the initial program in double precision annotated with labels. On the
right, the program after analysis annotated with the final accuracies at each
label referring to the user requirement.

Format Name
Mantissa size

(p - 1) Size of e emin emax

Binary16 Half precision 10 5 -14 +15

Binary32 Single precision 23 8 -126 +127

Binary64 Double precision 52 11 -1122 +1223

Binary128 Quadruple precision 112 15 -16382 +16383

Table 1: Parameters defining basic format floating-point numbers

3.1 Basics on Floating-Point Arithmetic

The IEEE754 Standard formalizes a binary floating-point number x in base β
(generally β = 2) as a triplet made of a sign, a mantissa and an exponent as
shown in Equation (1), where s ∈ {-1,1} is the sign, m represents the mantissa,
m = d0.d1...dp−1, with the digits 0 ≤ di < β, 0 ≤ i ≤ p − 1, p is the precision
(length of the mantissa) and the exponent e ∈ [emin, emax].

x = s.m.βe−p+1 (1)

The IEEE754 Standard specifies some particular values for p, emin and emax [4].
Also, this standard defines binary formats (with β = 2) which are described in Table
1. Hence, the IEEE754 standard distinguishes between normalized and denormalized
numbers. Indeed, the normalization of a floating-point number ensuring d0 6= 0 guar-
antees the uniqueness of its representation. Denormalized numbers make underflow

57

POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations 5

x Exponent e Mantissa m

x = 0 (if s = 0)
x = − 0 (if s = 1) e = 0 m = 0

Normalized numbers
x = (−1)s × 2e−1023 × 1.m

0 < e < 2047 any

Denormalized numbers
x = (−1)s × 2e−1022 × 0.m

e = 0 m 6= 0

x = +∞ (if s = 0)
x = −∞ (if s=0) e = 2047 m = 0

x = NaN (Not a Number) e = 2047 m 6= 0

Table 2: Numbers in double precision

gradual [13]. The IEEE754 standard defines also some special numbers. All these num-
bers are summarized in Table 2 (in Binary64). Moreover, the IEEE754 Standard defines
four rounding modes for elementary operations over floating-point numbers which are:
towards +∞, towards −∞, towards zero and towards the nearest denoted by ↑+∞,
↑−∞, ↑0 and ↑∼, respectively. Henceforth, we present the ufp (unit in the first place)
and ulp (unit in the last place) functions which express the weight of the most sig-
nificant bit and the weight of the least significant bit, respectively. In practice, these
functions will be used further in this article to describe the error propagation across
the computations. The definition of these functions is given in equations (2) and (3)
defined in [11] .

ufp(x) = min{i ∈ Z : 2i+1 > x} = blog2(x)c (2)

Let p be the size of the significand, the ulp of a floating-point number can be expressed
as shown:

ulp(x) = ufp(x)− p+ 1 . (3)

3.2 Related Work

There have been many efforts to automate the process of determining the best floating-
point formats. Darulova and Kuncak [5] proposed a static analysis method to com-
pute errors propagation. If their computed bound on the accuracy satisfies the post-
conditions then the analysis is run again with a smaller format and it stops until finding
the best format. Contrarily to our proposed tool, all their values have the same format
(uniform-precision). Other methods rely on dynamic analysis. By way of illustration,
Precimonious is considered as a dynamic automated search based tool that evaluates
and executes different mixed-precision configurations of the program to identify the
best configuration that satisfies the error threshold [15]. Also, we mention the Blame
Analysis [16], a novel dynamic method that speeds up precision tuning by combining
concrete and shadow program execution. The analysis determines the precision of all
operands such that a given precision is achieved in the final result. So as to be more
efficient with significant reduction in analysis time than used by itself, Blame Analy-
sis and Precimonious has been consolidated together and this combined approach has
shown better results in term of program speedup compared to using Blame Analysis

58

6 Ben Khalifa et al.

alone. Nonetheless, floating-point tuning of entire applications is not feasible yet, in
this moment, by this method. Moreover, Lam et al. [10] instrument binary codes aim-
ing to modify their precision without modifying the source codes. They also propose
a dynamic search method to identify the parts of code where the precision should be
modified. The major drawback of this tools is that the state space is exponential in
the number of variables and exploring even a subset is very time-intensive.
Finally, there are various rigorous static analysis approaches that use interval and affine
arithmetic or Taylor series approximations to analyze stability and to provide rigorous
bounds on rounding errors. However, they do not scale very well and therefore have
not been applied to high precision computing workloads. In this context, Chiang et al.
[2] has proposed an approach which allocate a precision to the terms of only arithmetic
expressions. Whereas they need to solve a quadratically constrained quadratic program
to obtain their annotations. Also, Solovyev et al. [17] have proposed the FP-Taylor tool
that implements a method to estimate round-off errors of floating-point computations
called Symbolic Taylor Expansions.

4 Static Analysis by Constraints Generation

In this section, we refine the computations of the forward and backward transfer func-
tions used by the POP tool for the cases of addition, product and subtraction done in
[11]. These functions are defined using the unit in the first and last places introduced
in equations (2) and (3). Next, these functions will be formalized as a set of constraints
made of propositional logic formulas and affine expressions among integers.

4.1 Forward and Backward Error Analysis

Forward addition, multiplication and subtraction Consequently, we intro-
duce the forward transfer functions corresponding to the addition

−→⊕ , product
−→⊗ and

subtraction
−→	 of two floating-point numbers x ∈ Fp and y ∈ Fq where Fp and Fq de-

note two sets of floating-point numbers in accuracy p and q, respectively. In Equation
(4), the operands xpp′ and yqq′ and their results zrr′ have respectively two parameters

p, p′, q, q′ and r, r′ which denote the correct precision of the result and of the error,
respectively. Other than that, in distinction to [11], we introduce the truncation errors
in order to be more precise through our computations. We denote the truncation errors
by ε+, ε× and ε− for the addition, product and subtraction operations respectively.

Definition 1 The forward addition
−→⊕ is given as shown in Equation (4):

−→⊕(xpp′ , yqq′) = zrr′ where r = ufp(xpp′ + yqq′)− ufp(2
ufp(xp

p′)−p+1
+

2
ufp(yq

q′)−q+1
+ 2ufp(zr

r′)−σ+)
(4)

In the sequel, we assume xpp′ = x, yqq′ = y and zrr′ = z. Let v be an exact value com-
puted in infinite precision and the floating-point value is such that v̂ = d0.d1...dp−1.2

e

of Fp. The comparison of these two values is |v − v̂| ≤ 2e−p+1. So, taking into account
the definition of the function ufp in Equation 2, we have for any x ∈ Fp and y ∈ Fq
the error εx on x is bounded by:

εx < 2ulp(x) = 2ufp(x)−p+1 and εy < 2ulp(y) = 2ufp(y)−q+1 (5)

59

POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations 7

The truncation error for the rounding mode towards the nearest ↑∼ defined by the

IEEE754 Standard for the addition of x and y whose result is z is given by ε+ ≤ 2
1
2
ulp(z)

and we have ulp(z) = ufp(z)− σ+ + 1 where σ+ presents the precision of the operator
+. Thus, the truncation error is shown in Equation 6:

ε+ ≤ 2ufp(z)−σ+ (6)

Definition 2 The forward product
−→⊗ is given as shown in Equation (7):

−→⊗(xpp′ , yqq′) = zrr′ where r = ufp(xpp′ × yqq′)− ufp(2ufp(x)+1.2ufp(y)−q+1+

2ufp(y)+1.2ufp(x)−p+1 + 2ufp(x)−p+1.2ufp(y)−q+1 + 2ufp(z)−σ×)
(7)

We assume that the error εz× of the multiplication of two floating-point numbers x
and y whose result is z is εz× = y . εx+x . εy + εx . εy + ε× where ε× is the truncation

error for the product and is equal to ε× ≤ 2ufp(z)−σ× (for the rounding mode towards
↑∼) and where σ× represents the precision of the operator ×. So, the error εz× could
be bounded as shown in Equation 8:

2ufp(x) ≤ x < 2ufp(x)+1 and 2ufp(y) ≤ y < 2ufp(y)+1

and consequently,

εz× < 2ufp(x)+1.2ufp(y)−q+1 + 2ufp(y+1.2ufp(x)−p+1 + 2ufp(x)−p+1.2ufp(y)−q+1 + 2ufp(z)−σ×

< 2ufp(x)+ufp(y)−q+2 + 2ufp(x)+ufp(y)−p+2 + 2ufp(x)+ufp(y)−p−q+2 + 2ufp(z)−σ×

thus,

εz× ≤ 2ufp(x)+ufp(y)−q+1 + 2ufp(x)+ufp(y)−p+1 + 2ufp(x)+ufp(y)−p−q+1 + 2ufp(z)−σ× . (8)

Definition 3 The forward subtraction
−→	 is given as shown in Equation (9):

−→	(xpp′ , yqq′) = zrr′ where r = ufp(xpp′ − yqq′)− ufp(2ufp(x)−p+1 − 2ufp(y)−q+1−
2ufp(z)−σ−)

(9)

Using the same approach in the addition case, we have 2ufp(x) ≤ x < 2ufp(x)+1 and
2ufp(y) ≤ y < 2ufp(y)+1 and the truncation error ε− ≤ 2ufp(z)−σ− where σ− is the
precision of the operator -. The subtraction error between x and y is bounded as
mentioned in Equation (9).

Backward addition, subtraction and multiplication Equivalently, we intro-
duce the backward transfer functions

←−⊕ ,
←−⊗ and

←−	 which take advantage of the forward
transfer functions and of the accuracy requirement on the results and by combining
these two findings it is then possible to lower the number of bits needed for one of the
operands. We consider that x is unknown where the result z and the operand y are
known. The backward functions for the proposed arithmetic functions are given in the
following properties.

60

8 Ben Khalifa et al.

Definition 4 The backward transfer function for the addition
←−⊕ is given as shown:

←−⊕(z, y) = (z−y)pp′ with p = ufp(z−y)−ufp(2ufp(z)−r+1−2ufp(y)−q+1−2ufp(x)−σ+)
(10)

To apply the backward analysis, we assume that one of the operands is unknown (x in
our case) while the result z is known. Then, we compute the precision p of the operand
x with respect to the user accuracy requirement and the forward analysis result. As
we said, the result and the operand errors can be bounded by εz+ < 2ufp(z)−r+1 and

εy < 2ufp(y)−q+1 and for the truncation error is given as ε+ ≤ 2ufp(x)−σ+ .

Definition 5 We present the backward transfer function for the multiplication
←−⊗ as

shown:

←−⊗(z, y) = (z ÷ y)pp′ with

p = ufp(z ÷ y)− ufp
(2ufp(y)+1.2ufp(z)−r+1 − 2ufp(z)+1.2ufp(y)−q+1

2ufp(y)+1(2ufp(y)+1 + 2ufp(y)−q+1
− 2ufp(x)−σ×

) (11)

In the case of product, we know that
←−⊗(z, y) = (z÷y)pp′ with p = ufp(z÷y)−ufp(εz×)

and where the truncation error ε× ≤ 2ufp(x)−σ− and the error εz× is bounded as it is
shown in Equation (11).

Definition 6

←−	(z, y) = (z+y)pp′ with p = ufp(z+y)−ufp(2ufp(z)−r+1 +2ufp(y)−q+1 +2ufp(x)−σ−)
(12)

We know that the roundoff errors are bounded as εz < 2ufp(z)−r+1 and εy < 2ufp(y)−q+1

and the truncation error ε− ≤ 2ufp(x)−σ− where σ− denotes the precision of the operator
- and the error in Equation (12) is given as εz− = εx − εy − ε−.

Obviously, our static analysis does not work on scalar values as in equations (4) to
(12) but on intervals instead. As described in [11], we abstract sets of values of Fp
using the following connection in Equation (13) where an element i] ∈ Ip correspond
to i] = [f, f]p is defined by two floating-point numbers and an accuracy p.

Ip 3 [f, f]p = {f ∈ Fp : f ≤ f ≤ f} with I =
⋃

p∈N
Ip . (13)

The operations
−→⊕],←−⊕], −→⊗] and

←−⊗] among values of Ip are defined in [11] in function of−→⊕ ,
←−⊕ ,
−→⊗ and

←−⊗ . For the rest of the article, we deal with the generation of constraints
only for the addition and the product.

4.2 Constraints Generation

In this section, we describe how to generate constraints to determine the lowest pre-
cision on variables and intermediary values in programs. An important definition of
the function ι, computed on floating-point numbers, is given in this section. By this
definition, we attempt to be far more efficient in the way we propagate errors across
the arithmetic operations. The methodical difference between the function ι(u, v) pro-
posed in [11] and our new definition ι(t, u, v, w) is that we take in consideration the

61

POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations 9

ufp and ulp of the two operands in order to compare the two floating-point number
errors α and β and we add an extra bit only if we are certain that ulp(α) is lesser than
the ufp(β) (0 otherwise). Compared to the former definition of [11], our new definition
improves significantly the accuracy of the static analysis by being less pessimistic. As
mentioned earlier, the transfer functions previously seen in Section 4.1 are not trans-
lated directly into constraints because the resulting system would be too difficult to
solve and contain non-linear constraints. Therefore, we reduce the problem to a con-
straint system consisting in propositional formulas on linear relations between integer
elements only. In what follows, we introduce the constraints that we generate for the
arithmetic expressions in which we are interested.

Forward operations Back to equations (4) to (12), our goal is to compute the
correct precision r and the precision r′ of the result error (εz+ for the addition and
εz× for the product) for the floating-point number z. Intuitively, we compute z = x+y
with related errors εx and εy and εz+ and we want to compute ufp(εz+) in function of
the errors on the operands.

Proposition 1 Let x in Fp and y in Fq and let z the result of the addition operation
between these two floating-point numbers. We have in the worst case a carry bit that
can occur through this operation as it has been proven in [12].

ufp(z) ≤ max(ufp(x), ufp(y)) + 1 (14)

As a matter of fact, the previous Equation (14) is considered as correct but pessimistic
(too large over-approximation) due to the fact that adding an extra bit specially for
cases we would not to, becomes very costly if we perform several computations. In
previous work [11], a new function ι was presented in order to refine Equation (14):
they compare the unit in the first places of the operands and they add an extra bit
only if they are equal which is correct but it misses exactness. In this work, we present
our new definition of function ι. In fact, let x in Fp and y in Fq, our strategy is to
compare ulp(x) with ufp(y) and conversely (ulp(y) with ufp(x)). In Definition 7, we
present function ι and in Figure 2 we present an example of cases of function ι where
an extra bit can occur (ι = 1) or not (ι = 0).

Definition 7 We introduce the function ι(t, u, v, w) as the exceeding of 1 bit that can
occur in operations between the floating-point numbers.

ι(t, u, v, w) =

{
0 u > t or w > u,

1 otherwise.
(15)

Proposition 2 In order to compute the function ι, we need to compute the unit in the
last places ulp(α) and ulp(β). Considering p′ the precision of α, from Equation (3) we
have ulp(α) = ufp(α)− p′+ 1 where ufp(α) = ufp(x)− p. Consequently, we obtain that:

ulp(α) = ufp(x)− p− p′ + 1 (16)

We know from Equation (3) that for x ∈ Fp the unit in the last place is ulp(x) =
ufp(x) − p + 1. This definition is also valid for ulp(εx) with p′ the precision of εx and
also we deduce that if ulp(x) = ufp(x)− p+ 1 than ufp(εx) = ufp(x)− p and than we
obtain the result in Equation (16).

62

10 Ben Khalifa et al.

Fig. 2: Definition of function ι. The figure on the left represents the case of ι(α, β)
= 1 and so an exceeding bit can occur throughout computations. The figure on
the right is equivalent to ι(α, β) = 0

Forward addition: From Definition 7, Equation (5) and Equation (14), we present
proposition (3). As we said before, if we sum z = x + y the error is equal to εz+ =
εx+εy+ε+. Now, in order to apply the definition of the function ι, we will disassociate
the total error εz+ into two errors: the roundoff error εxy = εx + εy and the truncation
error ε+. Also, we will manage by presenting one case of the ι function (u > t).

Proposition 3 Let a = ufp(x), b = ufp(y) and c = ufp(z),

ufp(εxy) < max(a− p+ 1, b− q + 1) + ι(a− p− p′ + 1, b− q) (17)

Taking into account Equation (17) above, ufp(εz+) is then bounded by:

ufp(εz+) < max
(

max
(
(a−p+1, b−q+1)+ι(a−p−p′+1, b−q), c−σ+

))
+ι(a−p−p′+1, b−q)

(18)
which implies that the precision of the result z in this addition is

r = ufp(x+y)−max
(

max
(
(a−p+1, b−q+1)+ι(a−p, b−q), c−σ+

))
−ι(a−p−p′+1, b−q) .

(19)

Proof. Formally, let α =
n1∑
i=n0

αi2
i and β =

m1∑
i=m0

βi2
i two floating-point numbers. Let

us assume that n1 < m0. From Definition 7, we have ufp(α) = n1 and ulp(β) = n0

then:

α+ β =

m0∑

i=n1

γi2
i where γi =

αi if i ∈ [n0, n1],

βi if i ∈ [m0,m1]

0 otherwise.

Finally, we conclude that ufp(εz+) = m1. In the case where n0 > m1, we deduce that
ufp(εz+) = n1. After, from Equation (18), we substitute the new refinement over-
approximation of the total error εz+ and consequently we deduce the precision r in
Equation (19).

Now, what remains to be done is to determine the precision of the error r′ of the
addition. That’s why, we need to compute ulp(εz+) as it is shown in Equation (20). In
the case of addition, we present ulp(εz+) as the smallest ulp between the two operands

63

POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations 11

errors (ulp(εx) and ulp(εy)) and we conclude finally that the precision of the error
r′ = ufp(εz+)− ulp(εz+).

ulp(εz+) = min
(
ulp(εx), ulp(εy)

)
(20)

Forward multiplication For the multiplication case, we apply our new Definition
7 and Equation (8) and we present proposition 4.

Proposition 4 Let a and b and c three integers with a = ufp(x), b = ufp(y) and
c = ufp(z). We apply the same proceeding as in the forward addition, we dissociate the
total error ε× into the roundoff error εxy = εx + εy and the truncation error ε×. So,
we have:

ufp(εxy) < max(a+ b− p+ 1, a+ b− q + 1) + ι(a− p− p′ + 1, b− q) (21)

and then the total error ufp(εz×) is given as

ufp(εz×) < max
(

max
(
(a−p+1, b−q+1)+ι(a−p−p′+1, b−q), c−σ+

))
+ι(a−p−p′+1, b−q)

(22)
and then we deduce that

r = ufp(x×y)−max
(

max
(
(a−p+1, b−q+1)+ι(a−p, b−q), c−σ+

))
−ι(a−p−p′+1, b−q) .

(23)

Next, like we have proceed in Equation (20) in the case of addition we may say that
the unit in the last place of εz× is defined by

ulp(εz×) = ulp(εx) + ulp(εy) (24)

By reasoning in the same way, we linearize the computations for the backward opera-
tions (addition and multiplication).

Backward addition: We consider now the backward transfer functions, depending
on Equation (10) for the addition case. We know that p = ufp(z−y)−ufp(εz−εy−ε+).
So, again let c = ufp(z) we can over-approximate εz thanks to the relations εz <
2c−r+1, εy ≥ 0 and ε+ ≥ 0 and consequently

p = ufp(z − y)− c+ r . (25)

Backward multiplication: Again, we take a = ufp(x), b = ufp(y) and c = ufp(z).
From Equation (11), we know that 2c ≤ z < 2c+1, 2b ≤ y < 2b+1 and εz× < 2c−r+1,

εy < 2b−q+1 which implies that y.εz× − z.εy < 2c+b−r+2 − 2b+c−q+2 and that

1

y.(y + εy)
< 2−2b .

Consequently,

εz× ≤ 2−2b.(2c+b−r+2 − 2b+c−q+2)− 2a−σ× ≤ 2c−b−r+1 − 2c−b−q+1 − 2a−σ×

and finally,

p = ufp(z ÷ y)−max(max(c− b− r + 1, c− b− q + 1), a− σ×) . (26)

64

12 Ben Khalifa et al.

5 The POP Tool

In this section, we present our tool, POP: Precision OPtimizer. We present its archi-
tecture, its input including the program file annotated with the developer accuracy
expectation, parameters and its outputs. Also, we illustrate the mechanism followed
by POP to lower the precision of the floating-point programs.

5.1 Architecture

At this stage, we present the main architecture of POP also described in Figure 3. POP
is written in JAVA while each expression, boolean and statement presented in Figure
4 are represented as packages gathering the different classes of their definition.We can
illustrate the tool hierarchy as follows:

• Parser: It takes a file of a floating-point program referring to our simple imperative
language. Before evaluating our program, we call the ANTLR: (ANother Tool for
Language Recognition) [14] framework in order to generate, from a grammar file,
a parser that can build and walk parse tree.

• Range determination: Consists in launching the execution of the program a
certain number of times in order to determine dynamically the range of variables
(we plan to use a static analyzer in the future).

• Constraints generation: It implements the forward and backward error analysis
transfer function seen in Section 4 where the main semantics are detailed in [11].
In addition to the variables of accuracy assigned to each label ` which are accF (`),
accB(`) and acc(`) (defined in Section 5.2), we add new constraints relative to the
ulp and the precision of the error in order to compute correctly the function ι
discussed in Section 4.2.

• Constraints resolution: Firstly, we call the Z3 SMT solver [6] to find a solution
for our constraints and we implement a cost function (see Section 6) to refine the
solutions obtained in term of optimality. In future work, we will explore a new
resolution method based on policy iterations [8]. Concerning the complexity of the
analysis performed by POP, in practice, the analysis is carried out by the SMT
solver which solves the constraints. The number of variables and constraints is
linear in the size of the program. The complexity to analyze a program of size n
is then equivalent to that of solving a system of n constraints in our language of
constraints (by the solver).

5.2 Simple Imperative Language of Constraints

In order to explain the constraints generation, we introduce the following simple im-
perative language. As it is mentioned in Figure 4, we assign to each element of our
language (expression, boolean and statement) a unique label ` ∈ lab with the intention
of identifying without ambiguity each node of the syntactic tree. The same strategy as
in [11] is adopted, the statement require accuracy(x, n)` denotes the accuracy that
x must have at the control point `. Therefore, we assign to each control point ` three
integer variables corresponding to the forward, the backward and the final accuracies
so that the inequality in Equation (27) is verified. Hence, we notice that in the forward
mode, the accuracy decreases contrarily to the backward mode when we strengthen
the post-conditions (accuracy increases).

0 ≤ accB(`) ≤ acc(`) ≤ accF (`) (27)

65

POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations 13

Original Program

Oversized Precision Formats

ANLTR4 framework Parser (file .g 4)
Program's Syntactic Tree Generator

Forward & Backward Error Analysis for
Constraints Generation

Us e r Ac c u ra c y

Re q u irem e nt Z3SMT Solver

Cost Function

Range Determination by Dynamic Analysis
Optimized Program

Optimized Mixed-Precision Formats

Result Extraction

Fig. 3: POP Mixed-Precision Analysis Architecture

Expression : e ::= c]p` | id` | e`11 +` e`22 | e`11 −` e`22 | e`11 ×` e`22 | e`11 ÷` e`22
Boolean : b ::= true | false | e`11 <` e`22 | e`11 >` e`22 | e`11 =` e`22
Statement : c ::= c`11 ; c`22 |id =` e`1 | while` b`0 do c`11 | if ` b`0 then c`11 else c |
require accuracy(x,n)`

Fig. 4: Simple imperative language of constraints

6 Experimental Results

In this section, we aim at evaluating the performance of POP which generates the
constraints defined in Section 4.2 and calls the Z3 SMT solver in order to obtain a
solution. The solutions returned by Z3 are not unique due to the fact that it is not
an optimizer but a solver. To surpass this limitation, we add to our global system of
constraints an additional constraint related to a cost function φ (we take the same
definition in [11]). The purpose of a cost function φ(c) of a given program c is to
compute the sum of the accuracies of all the variables and the intermediary values
collected in each label of the arithmetic expressions as it is shown in Equation (28).

φ(c) =
∑

x∈Id,`∈Lab
acc(x`) +

∑

`∈Lab
acc(`) (28)

After, our tool searches the smallest integer P such that our system of constraints
admits a solution. Consequently, we start the binary search with P ∈ [0,52 × n] where
all the values are in double precision and where n is the number of terms in Equation
(28). While a solution is found for a given value of P , a new iteration of the binary
search is run with a smaller value of P . When the solver fails for some P , a new
iteration of the binary search is run with a larger P and we continue this process
until convergence. We ran our precision-tuning analysis on programs that perform
sum and product operations only (for now) to show the performances of our forward

66

14 Ben Khalifa et al.

and backward analysis described in 4.2. Noting that these operations are widely used
in embedded systems, graphic processing, finance, etc. We take into consideration two
examples which consist in a rotation matrix-vector multiplication and the computation
of the determinant of 3 × 3 matrices and we present in Figure 5 some measures of
the efficiency of our analysis on these two examples. We assume that in the original
programs of our examples all the variables are in double precision.

Rotation Matrix-Vector Multiplication

Our first example consists in a rotation matrix R which is used in the rotation of
vectors and tensors while the coordinate system remains fixed. For instance, we want
to rotate a vector around the z axis by angle θ. The rotation matrix and the rotated
column vectors are given by:

[
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

][
x
y
z

]
=

[
x′

y′

z′

]

We aim from this experimentation to compute the performance of our POP tool from
different angles of rotation π

3
, π

4
and π

6
, a variety of input vectors chosen with difference

in magnitude A = [1.0, 2.0, 3.0], B = [10.0, 100.0, 500.0], C = [100.0, 500.0, 1000.0],
D = [−100.0,−10.0, 1000.0], E = [1.0, 2.0, 500.0] and F = [1.0, 500.0, 10000.0] and for
different user accuracy requirements 10, 15, 20, 25, 30 and 35. This example generates
858 constraints and 642 variables which are very manageable by the Z3 solver. Initially
starting with 10335 bits for the original program (only variables in double precision),
Figure 5c shows that the improvement, in the number of bits needed to realize the user
requirements, compared to the initial number of bits, ranges from 70 % to 94 % which
confirms the usefulness of our analysis. Also, we can observe in Figure 5e that the
majority of variables fits in single precision format for an accuracy ≤ 35 and that no
double precision variables are noticed for vectors A, B, C, D and E for an accuracy
15. For this example, we found that the variation of the angles of rotation do not have
impact on the number of double precision variables after analysis that’s why we choose
only the angle π

4
in Figure 5e and by modifying the magnitude of the vectors at every

turn. Besides, POP assigns zeros to the accuracies of the variables that are not used by
the program.

Determinant of 3 × 3 Matrices

Our second example computes the determinant det(M) of a 3 × 3 matrices M1, M2
and M3 as shown:

M =

[
a b c
d e f
g h i

]
→ det(M) = (a.e.i+ d.h.c+ g.b.f)− (g.e.c+ a.h.f + d.b.i)

The matrices coefficients belong to multiple magnitude ranges: M1 =[
[−50.1,50.1] [−50.1,50.1] [−50.1,50.1]
[−10.1,10.1] [−10.1,10.1] [−10.1,10.1]
[−5.1,5.1] [−5.1,5.1] [−5.1,5.1]

]
, M2 =

[
[−100.1,100.1] [−100.1,100.1] [−100.1,100.1]
[−10.1,10.1] [−10.1,10.1] [−10.1,10.1]
[−2.1,2.1] [−2.1,2.1] [−2.1,2.1]

]
and

M3 =

[
[−10.1,10.1] [−10.1,10.1] [−10.1,10.1]
[−20.1,20.1] [−20.1,20.1] [−20.1,20.1]
[−5.1,5.1] [−5.1,5.1] [−5.1,5.1]

]
. With 686 number of variables and 993 gener-

ated constraints, POP finds the minimal precision of the inputs and intermediary results
for this example in less than 0.3 seconds as it is observed in Figure 5b (time only for
the resolution of the system of constraints and the calls of the Z3 SMT solver done

67

POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations 15

 0.2

 0.205

 0.21

 0.215

 0.22

 0.225

 0.23

 0.235

 0.24

10 15 20 25 30 35

Ti
m

e
in

 S
ec

on
ds

 Accuracy User Requirements

Θ=Π/3
Θ=Π/4
Θ=Π/6

(a) Precision tuning tool execution time for
the rotation matrix-vector multiplication

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

10 15 20 25 30 35

Ti
m

e
in

 S
ec

on
ds

 Accuracy User Requirements

Matrix M1
Matrix M2
Matrix M3

(b) Precision tuning tool execution time for
the a 3 × 3 matrix determinant

 70

 75

 80

 85

 90

 95

10 15 20 25 30 35

%
 I

m
p
ro

ve
m

e
n
t

C
o
m

p
a
ra

e
d
 t

o
 t

h
e
 I

n
it
ia

l B
it
s

N
u
m

b
e
r

 Accuracy User Requirements

A=[1.0, 2.0, 3.0]
B=[10.0, 100.0, 500.0]

C=[100.0, 500.0, 1000.0]
D=[-100.0, -10.0, 1000.0]

E=[1.0, 2.0, 500.0]
F=[1.0, 500.0, 10000,0]

(c) Optimization of the number of bits com-
pared to the original rotation matrix-vector
multiplication program

 70

 75

 80

 85

 90

 95

 100

10 15 20 25 30 35

%
 I

m
p
ro

ve
m

e
n
t

C
o
m

p
a
ra

e
d
 t

o
 t

h
e
 I

n
it
ia

l B
it
s

N
u
m

b
e
r

 Accuracy User Requirements

Matrix M1
Matrix M2
Matrix M3

(d) Optimization of the number of bits com-
pared to the original 3 × 3 determinant pro-
gram

 0

 20

 40

 60

 80

 100

10 15 20 25 30 35%
 D

o
u
b
le

 P
re

ci
si

o
n
 A

ft
e
r

Fo
rw

a
rd

 a
n
d
 B

a
ck

w
a
rd

 A
n
a
ly

si
s

 Accuracy User Requirements

A=[1.0, 2.0, 3.0]
B=[10.0, 100.0, 500.0]

C=[100.0, 500.0, 1000.0]
D=[-100.0, -10.0, 1000.0]

E=[1.0, 2.0, 500.0]
F=[1.0, 500.0, 10000,0]

(e) The percentage of the double precision
variables after the forward and backward
analysis for the first example for θ = π

4

 0

 20

 40

 60

 80

 100

10 15 20 25 30 35

%
 D

o
u
b
le

 P
re

ci
si

o
n
 A

ft
e
r

Fo
rw

a
rd

 a
n
d
 B

a
ck

w
a
rd

 A
n
a
ly

si
s

 Accuracy User Requirements

Matrix M1
Matrix M2
Matrix M3

(f) The percentage of the double precision
variables after the forward and backward
analysis for the second example

Fig. 5: Measures of the efficiency of the analysis on the two input examples:
the time execution measure, the optimization of the number of bits of the trans-
formed programs compared to the original ones and the percentage of the double
precision variables after analysis.

by binary search) for different requirements of accuracy. Hence, as viewed in our first

68

16 Ben Khalifa et al.

example, the final number of bits of the transformed program compared to 9964 initial
bits is considerable as shown in Figure 5d. Finally, we notice that our analysis suc-
ceeded in turning off almost the double precision variables to a fairly rounded single
precision ones for an accuracy ≤ 20.

7 Conclusions and Future Work

In this article, we have introduced POP, an automated tuning tool for floating-point
precision that computes the minimal number of bits needed for the variables and in-
termediary results in order to accomplish the user requirement of accuracy. Also, we
have explained in details our forward and backward static analysis, done by abstract
interpretation. Moreover, we have shown that we can express our analysis as a set
of constraints made of propositional logic formulas and relations between affine ex-
pressions over integers which can be easily checked by an SMT solver. Obviously, our
approach can be extended to other language structures in particular arrays and func-
tions. Besides, we have considered that a range determination is performed by dynamic
analysis on the variables of our programs and that no overflow arises during our anal-
ysis but from this time on we would like to adopt a static analyzer in order to infer
safe ranges on our variables.
In future work, we would like to explore the policy iteration method [8] as a replace-
ment for the non-optimizing solver (Z3) coupled to a binary search used in this article.
In fact, we aim to apply the policy iteration method to improve the accuracy. The
principle consists in transforming all the generated constraints to the form of min-max
of discrete affine maps. Further, it will be interesting to feed the policy iteration with
the Z3 solution as an initial policy and consequently comparing the solutions of these
two methods in term of execution time and optimality. Nevertheless, our goal is to
validate experimentally our tool on codes from various fields including safety-critical
systems such as control systems for vehicles, medical equipment and industrial plants.
Conclusively, comparing our tool to other existing tools in the matter of analysis time
and speed and the quality of the solution is a tremendous challenge to examine.

References

1. Patriot missile defense: Software problem led to system failure at dhahran, saudi
arabia. Tech. Rep. GAO/IMTEC-92-26, General Accounting office (1992)

2. Chiang, W.F., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G.,
Rakamarić, Z.: Rigorous floating-point mixed-precision tuning. In: Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL). ACM (2017)

3. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, California, USA, January 1977. pp. 238–252 (1977)

4. Damouche, N., Martel, M.: Salsa: An automatic tool to improve the numerical
accuracy of programs. In: Shankar, N., Dutertre, B. (eds.) Automated Formal
Methods. Kalpa Publications in Computing, EasyChair (2018)

5. Darulova, E., Kuncak, V.: Sound compilation of reals. In: Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’14, ACM (2014)

69

POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations 17

6. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Proceedings of the Theory
and Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. TACAS’08/ETAPS’08, Springer-
Verlag, Berlin, Heidelberg (2008)

7. De Moura, L., Bjørner, N.: Satisfiability modulo theories: Introduction and appli-
cations. Commun. ACM (2011)

8. Gaubert, S., Goubault, E., Taly, A., Zennou, S.: Static analysis by policy itera-
tion on relational domains. In: De Nicola, R. (ed.) Programming Languages and
Systems. Springer Berlin Heidelberg (2007)

9. Halfhill, T.R.: The truth behind the Pentium bug: How often do the five empty
cells in the Pentium’s FPU lookup table spell miscalculation? (1995)

10. Lam, M.O., Hollingsworth, J.K., de Supinski, B.R., Legendre, M.P.: Automatically
adapting programs for mixed-precision floating-point computation. In: Proceedings
of the 27th International ACM Conference on International Conference on Super-
computing. ICS ’13, ACM (2013)

11. Martel, M.: Floating-point format inference in mixed-precision. In: NASA Formal
Methods - 9th International Symposium, NFM 2017, Moffett Field, CA, USA, May
16-18, 2017, Proceedings. pp. 230–246 (2017)

12. Muller, J.M.: On the definition of ulp(x). Research Report RR-5504, LIP RR-2005-
09, INRIA, LIP (Feb 2005), https://hal.inria.fr/inria-00070503

13. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser Boston, 1st edn. (2009)

14. Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd edn. (2013)
15. Rubio-González, C., Nguyen, C., Nguyen, H.D., Demmel, J., Kahan, W., Sen, K.,

Bailey, D.H., Iancu, C., Hough, D.: Precimonious: tuning assistant for floating-
point precision. In: International Conference for High Performance Computing,
Networking, Storage and Analysis, SC’13, Denver, CO, USA - November 17 - 21,
2013

16. Rubio-Gonzlez, C., Nguyen, C., Mehne, B., Sen, K., Demmel, J., Kahan, W., Iancu,
C., Lavrijsen, W., Bailey, D.H., Hough, D.: Floating-point precision tuning using
blame analysis. In: 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE) (2016)

17. Solovyev, A., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous estima-
tion of floating-point round-off errors with symbolic taylor expansions. In: Bjørner,
N., de Boer, F. (eds.) FM 2015: Formal Methods. Springer International Publishing
(2015)

70

Visualising Railway Safety Verification

Filippos Pantekis, Phillip James, Liam O’Reilly,
Daniel Archambault, and Faron Moller

Department of Computer Science, Swansea University, Wales, UK
{filippos.pantekis, p.d.james, l.p.oreilly, d.w.archambault,

f.g.moller}@swansea.ac.uk

Abstract. The application of formal methods to the railway domain
has a long-standing history within the academic community. Many ap-
proaches can provide both successful proofs of safety and, in the case
of failure, traces explaining the failure. However, if a given model does
produce a failure, it is difficult to understand the conditions that led to
the issue. We present a method to visualise railway safety issues to help
engineers and researchers explore the problem so that they can adjust
their designs accordingly. We evaluate our approach through qualitative
real-world case studies with researchers and railway engineers.

1 Introduction

Railway signalling represents an example of safety critical control systems. As
such, the use of rigorous development processes using formal methods has been
extensively studied by the academic community [15, 6, 14, 11, 24, 19, 13, 16, 20,
27, 1]. Such approaches involve automatically producing a mathematical proof
that the control system under consideration obeys certain rules regarding safety.
However, uptake of such methods by industry has been hindered by the chal-
lenges of: scalability (the proposed mathematical proof techniques do not scale
to large industrial examples); faithfulness (the models created fail to capture the
intricacies of modern railway signalling, which are often supplier dependent); and
usability (existing tools for formal analysis are not necessarily accessible to sig-
nalling engineers). In recent years, the formal methods community has proposed
solutions to scalability [25] and faithfulness [21]. However accessibility remains
an open challenge.

In this paper, we present a visualisation system for understanding safety is-
sues in scheme plans, specifically (1) a method to draw scheme plans that is useful
for railway engineers, supporting interoperability between toolsets; and (2) a dy-
namic visualisation technique to view key frames pertaining to safety issues in
context. We evaluate these approaches with railway engineers from Siemens Rail
UK and academics working in formal methods. The feedback provides evidence
that our algorithm for track layout is a useful way to improve tool interoper-
ability, whilst the evaluation of our visualisation approach for counterexamples
suggests that experienced users can quickly identify issues with designs.

71

2 Pantekis et al.

2 Related Work

In this section, we give a brief review of the field of formal methods and its
application to railways, before considering approaches to railway graph layout
and how they relate to our approach.

2.1 Railway Verification

Formal verification aims to provide a rigorous mathematical argument to show
that a system or design meets a given requirement. A typical application area for
formal methods is safety critical systems, of which railway control systems are
a clear example. Many approaches apply formal methods to railway safety veri-
fication [15, 6, 14, 11, 24, 19, 13, 12, 16, 20, 27, 1], with much of this work focusing
on the scientific development and application of results to examples in industry.
However, uptake of these results by industry is impeded by complex notations
and the heavy mathematical constructions that are involved [21].

Recently, there have been advances focusing on the accessibility of these
approaches. Specifically, toolsets that support domain specific languages [21,
17] and graphical specification development environments [22, 18] have allowed
railway engineers to model and verify systems in notations that are natural.
However, when a verification attempt fails, methods for presenting the reasons
for failure are lacking.

Another limitation with existing toolsets is that users are often required to
re-draw and re-enter railway layouts directly into the verification toolset when
geospatial information for track plans is unavailable. Re-entering data is clearly
cumbersome and time consuming, whilst importation of verification data tends
to be hard as geospatial information is often missing from the data.

In this paper, we address these points by adapting visualisation research
results to this area. In particular, we apply energy-based graph layout approaches
to automatically import and derive geospatial information for track plans. We
then utilize approaches to key frame visualisation in order to provide feedback
on failed verification attempts. We have incorporated these into the OnTrack
railway verification toolset [22] and have evaluated the work with end users.

2.2 Graph Layout for Railways

Railway track plans illustrate how various railway lines are connected at stations
and junctions, and can be interpreted (and drawn) as graphs. Such depictions are
natural for engineers working within the railway domain and can be of benefit
in visualising points of failure. However, they are less relevant with respect to
the correct functioning of the railway.

Existing approaches to drawing metro maps and network layouts [31, 30, 26,
7] provide possible methods for visualising track plans. Here, stations are placed
in the plane, with their spread-out geographic locations taken into account along-
side desirable æsthetic properties. For track plans, however, we deal with small
geospatial areas with complex network topologies; geospatial considerations are

72

Visualising Railway Safety Verification 3

far less important to us, and in any case are typically unavailable (particularly
if the railway system has not been built).

In order to draw the track plan automatically, we use energy-based methods
for graph drawing [23, 8, 4]. These methods modify the graph locally use a scoring
function to determine if the layout has improved based on the selected æsthetic
criteria. Such methods have been used for general graph drawing but have not
been adapted for track layout. We create a method that optimises for the de-
sired properties of track plans, making drawings useful for domain scientists and
railway engineers.

2.3 Dynamic Data Visualisation

Visualising a railway safety issue – such as how two trains may collide – requires
a visualisation of the track plan and the trains that are moving on it. This
is a dynamic multivariate graph visualisation problem [5] where the attributes
(trains and point/signal states) are dynamic but the network topology remains
the same.

There has been significant work in the area of dynamic data visualisation.
In much of this work, animation is of benefit if it is a short animated transition
around a key event [29, 2]. Experimental results [3] have found that a “small
multiples” representation (visualising dynamic attributes as colour on a static
graph) was significantly faster when compared to animation.

In the railway verification community, signalling engineers often step through
safety failures like mathematicians step through the lines of a proof. Our visuali-
sation must not only be perceptually effective, it must also support the cognitive
map with which railway engineers and formal methods researchers approach the
problem. We thus provide an interactive step-through approach, with support
for small multiples around key events.

3 Railway Visualisation Methods

In this section, we present our simulated annealing algorithm [8] for computing a
railway layout, followed by details concerning our counterexample visualisation
using key frames.

For our purposes, railway track plans are comprised of: track segments (TS);
and points, which may be left-facing (LFP) or right-facing (RFP), and whose
straight and offshoot tracks are designated as normal (N) or reverse (R), one of
each. (The specific purposes of these distinctions is unimportant for this paper.)

TS = { }

LFP =
{

E R
N

, E N
R

,
E R

N ,
E N

R

}

RFP =
{

N E
R

, R E
N

,
N E
R ,

R E
N

}

73

4 Pantekis et al.

The straight and offshoot tracks of points are designated as either normal (N)
or reverse (R). A railway graph RG = (V,E) is an undirected graph where the
vertices V = TS∪ LFP∪RFP are either track segments or points. A track plan
layout is an assignment of two-dimensional positions (x, y) for all vertices in the
Railway Graph.

3.1 The Simulated Annealing Layout Algorithm

To establish a good layout for a track plan (i.e., such that it conforms with
validity criteria and is therefore understood by railway engineers), we employ a
simulated annealing algorithm [8]. This algorithm is given as follows:

`← initial (random) layout;

temp ← nodeCount(`); – – initial temperature

best ← `;

iter ← 0;

while temp > 0 do:

iter ← iter+1;

`← tweak(`, temp);

if ν(`) > ν(best) or rand(0,1) < exp(ν(`)−ν(best)
temp

)

then best ← `;

if iter mod (temp∗c) = 0

then temp ← btemp∗dc
return best

Each point is initialised with a random type from the sets LFP and RFP (as
determined by the given data) to provide an initial layout. This layout is then
repeatedly tweaked in an effort to discover an optimal (best) layout.

There are three essential components to our algorithm: a temperature (temp);
a valuation function ν for rating layouts; and the tweak function.

• From an initial value (equal to the size of the graph), the temperature pa-
rameter is periodically reduced by a preset constant factor d ∈ (0, 1), and
the algorithm iterates until this temperature reaches zero.

• The valuation of a layout is penalised if:

– Node overlap: the distance between two distinct nodes is zero;

– Lack of gap: the x-coordinates x1 and x2 of two unconnected nodes are
too close, i.e., |x1 − x2| < 1;

– Long edges: the distance between two edges is greater than an ideal.

• The tweak function takes a layout and a temperature and produces a new
layout by making a series of random changes; each point in the graph may be
changed to another point of the same type (left/right-facing). The number
of such changes is dependent on the temperature, with higher temperatures
giving rise to more changes. Hence, tweaking becomes more subtle as the
algorithm progresses.

74

Visualising Railway Safety Verification 5

There are two features of the algorithm worthy of comment:

1. The temperature is kept fixed for a number of iterations which is some preset
constant c> 0 times the temperature before being reduced. Thus, the number
of iterations carried out at a given temperature decreases exponentially with
the temperature.

2. There is randomness incorporated into the algorithm in that the layout may
be randomly replaced by a less-optimal layout; however, the likelihood of
this diminishes exponentially with the temperature and the poorness of the
layout compared to the currently-identified best.

Fig. 1 shows the results of applying our simulated annealing. The first layout
in the figure is the ideal layout, whilst the following three illustrate progressive
results. The unreadable labels are immaterial; all that is of interest is the layout.

For this run, we set the temperature decay d=0.75 and the iteration constant
c=3; and used the following penalties in scoring: each node overlap and lack
of gap is penalised −1; and each edge greater than 1 is penalised −10. As is
apparent, the algorithm effectively works from a poor layout towards ones close
to the ideal (though flipped vertically).

3.2 Verification: Insights from Failure

When verification tools discover a problem (such as the possibility of a crash),
they can evidence the problem by providing a sequence of events leading from
the initial configuration to the problematic state.

However, being derived from a proof tool, this sequence is often provided in a
mathematical language that is unnatural for signal engineers. To overcome this,
we have implemented an approach to visualising these traces in the OnTrack
toolset [22]. The last image in Fig. 2 shows one way to depict a possible error
state. Each step in the mathematical trace (i.e., each event causing a system
state change) is shown through highlighting the state of the track plan elements.
Users then have the option to step through each system state leading to the
error.

For short traces, this approach can be sufficient. However, counterexample
traces can easily become thousands of steps long with many of the steps being
superfluous to what is actually causing the problem. We have thus provided
users with a simple drop-down filter that allows them to select which types of
key frames to present, specifically frames that correspond to particular events
in the trace. For selection criteria, we include events from the generated trace.
These include events like “route set” or “point switched position”. Fig. 2 shows
an example of applying a filter that only shows “route set” events.

4 Expert Feedback

Four experts evaluated our tool and provided feedback (via interviews of ap-
proximately 30-45 minutes). Participants consisted of railway engineers working

75

6 Pantekis et al.

Fig. 1. Sample results from applying simulated annealing.

76

Visualising Railway Safety Verification 7

as safety test engineers in industry (P1 and P4), and academics working on
applying formal methods to railways (P2 and P3). The participants were asked
to provide feedback on:

• The usefulness of the automatic layout when importing existing railway data.
Participants were given a demonstration of our simulated annealing approach
and example layouts. They were then asked to compare the automatic layouts
to existing practice and to rate the usefulness from 1 (not useful) to 5 (highly
useful) as a step towards the end goal of formal verification.

• The usefulness of the visualisation of counterexamples. Participants were
presented with a counterexample trace and a demonstration of key event
selection. They discussed the key events they would like to see and how
useful an approach it would be.

4.1 Importation of Data and Automated Layout

The participants working in academia were keen on the approach, with average
ratings: General usefulness 4; Usefulness as a starting point for re-drawing 3;
and Usefulness for verification 5.

Clear layouts take precedence over geography. P2 provides statements to
support this idea: “When verifying, you do not care too much about locations;
but having a clear representation helps a lot in identifying errors”. Similarly P3
noted: “I don’t really care about the physical reality of the situation as long as
I have the logic in place, that is perfect for me.” There is evidence that the
automatic layout would have an impact on work practices, with P2 noting the
approach would “save a lot of manual work” and P3 stating it is a “good way
to share benchmarks for verification without spending time encoding”.

However, P3 cautioned using automatic layout as a starting point for editing
as it may lead to human errors: “Human error may be a problem if the plan is
laid out automatically and doesn’t match the real-life model”. P2 noted that it
would be useful to “set a region as a ‘correct’ part of the plan before re-applying,
so that you eventually get a plan that corresponds to the real plan”. This indicates
that we should use actual geographic information when available.

The participants working within the railway industry on average rated au-
tomatic layout as follows: General usefulness 3; Usefulness as a starting point
for re-drawing 3.5; and Usefulness for verification 4. These participants noted
that the usefulness depends on company specific formats versus shared data. P4
noted: “It could be very useful for some things but not for others; If you don’t
have the original scheme plan, it would be very useful.”

P1 stated that the approach would be more useful if it provided affordances
for user steering or manipulation of the layout, particularly for point directions.
From these participants, it is clear that if we have existing track layout infor-
mation we should use it, but that the automatic layout tool can be useful when
this information is not present.

77

8 Pantekis et al.

Fig. 2. Presentation of an error trace using the “route set” filter. Green indicates a set
route, blue indicates occupation by a train, red an issue, here a “run through”.

78

Visualising Railway Safety Verification 9

4.2 Counterexample Visualisation

With respect to visualising counterexample traces, the feedback was positive.
Academics gave the following average ratings: General usefulness of step func-
tion 4.5; and Dynamic selection of key frames 4.5. Industry engineers gave the
following average ratings: General usefulness of step function 4.5; and Dynamic
selection of key frames 4.5.

P1 noted that the implemented visual approach was in line with their mental
model when performing a trace and would save time: “This is what I do now
but without the visual assistance, which would make it quicker”. All bar one par-
ticipant explicitly stated that they would like to have all counterexample steps
available as well as key frame selection. P3 stated: “I think you need both the full
trace and be able to jump between states; over simplification doesn’t always make
things easier”. Interestingly, participants agreed that key frames would be very
useful for experienced users, but a full trace would help for novice users. For ex-
ample, P2 noted: “I think it depends on experience: senior verification engineers
may identify problems using only a few key frames, but younger people may like
to see the full trace to help understanding”. P3 noted: “Advanced verification
experts could look at brief traces and likely detect problems”. All participants
also agreed that the most vital key frame would be “route setting” as described
by P4 : “Route setting will highlight where the error is in the control table.”

Participants suggested improvements, with three participants saying that
viewing detail in time around a particular key frame would be useful. P1 stated:
“It may be an option to have few of them, maybe 4-5 before and after an event”.
Similarly, P2 and P3 would like to see events within an area of a scheme plan,
with P3 stating: “I might like to see all steps within a particular section.”

5 Conclusion

We have presented a technique that increases the accessibility and usability of
formal methods within the railway verification community. Our solution con-
sists of two parts. Firstly, we apply simulated annealing to automatically lay out
railway graphs when no geographic information is available, improving interop-
erability between railway data sets. Secondly, we present key frame visualisations
to support the understanding of counterexamples as presented in the language
of the domain. Both approaches have been evaluated by expert users.

In future work, we would like to follow up on feedback from expert users
and use small multiples [28] to visualise details (i.e., nearby frames) around key
frames of interest. Similarly, we would like to explore the application of simulated
annealing within subgraphs of a railway graph. To this end, constraint-based
methods [9, 10] could be useful. Finally, we would like to perform more formal
evaluations of the railway layout algorithm through metric experiments as well
as user studies on realistic tasks that railway engineers are required to perform
on a regular basis.

79

10 Pantekis et al.

Acknowledgments: The authors wish to thank Siemens Rail Automation UK,
in particular Simon Chadwick, Mark Thomas and Thomas Werner for their
support in undertaking this work.

References

1. N. Aber, B. Blanc, N. Ferkane, M. Meziani, and J. Ordioni. RBS2HLL. In RSSR’19.
Springer, 2019.

2. D. Archambault and H. C. Purchase. Can animation support the visualization of
dynamic graphs? Information Sciences, 330, 2016.

3. D. Archambault and H. C. Purchase. On the effective visualisation of dynamic
attribute cascades. Information Visualization, 15(1), 2016.

4. A. Barsky, T. Munzner, J. Gardy, and R. Kincaid. Cerebral: Visualizing multiple
experimental conditions on a graph with biological context. IEEE Transactions on
Visualization and Computer Graphics, 14(6), 2008.

5. F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and survey of dynamic
graph visualization. Computer Graphics Forum, 36(1), 2017.

6. C. Bernardeschi, A. Fantechi, S. Gnesi, and G. Mongardi. Proving safety properties
for embedded control systems. In Dependable Computing — EDCC-2, pages 321–
332. Springer, 1996.

7. U. Brandes and D. Wagner. Using graph layout to visualize train interconnection
data. In Graph Drawing. Springer, 1998.

8. R. Davidson and D. Harel. Drawing graphs nicely using simulated annealing. ACM
Trans. Graph., 15(4), 1996.

9. T. Dwyer. Scalable, versatile and simple constrained graph layout. Computer
Graphics Forum, 28(3), 2009.

10. T. Dwyer, Y. Koren, and K. Marriott. Ipsep-cola: An incremental procedure for
separation constraint layout of graphs. IEEE Transactions on Visualization and
Computer Graphics, 12(5), 2006.

11. C. Eisner. Using symbolic model checking to verify the railway stations of hoorn-
kersenboogerd and heerhugowaard. In Correct Hardware Design and Verification
Methods, pages 99–109. Springer, 1999.

12. A. Ferrari, A. Fantechi, S. Gnesi, and G. Magnani. Model-based development and
formal methods in the railway industry. IEEE Software, 30(3), May 2013.

13. A. Ferrari, G. Magnani, D. Grasso, and A. Fantechi. Model checking interlocking
control tables. In FORMS/FORMAT 2010. Springer, 2011.

14. W. Fokkink and P. Hollingshead. Verification of interlockings: from control tables
to ladder logic diagrams. In FMICS’98. CWI, 1998.

15. J. F. Groote, S. van Vlijmen, and J. Koorn. The safety guaranteeing system at
station hoorn-kersenboogerd. Technical report, Utrecht University, 1995.

16. A. E. Haxthausen, J. Peleska, and R. Pinger. Applied bounded model checking for
interlocking system designs. In Proceedings of SEFM 2013. Springer, 2014.

17. A. Idani, Y. Ledru, A. Ait Wakrime, R. Ben Ayed, and P. Bon. Towards a tool-
based domain specific approach for railway systems modeling and validation. In
RSSR’19. Springer, 2019.

18. A. Iliasov, D. Taylor, L. Laibinis, and A. Romanovsky. SAFECOMP 2018. 2018.

19. P. James. Sat-based model checking and its applications to train control software.
Master’s thesis, Swansea University, 2010.

80

Visualising Railway Safety Verification 11

20. P. James, A. Lawrence, F. Moller, M. Roggenbach, M. Seisenberger, A. Setzer,
K. Kanso, and S. Chadwick. Verification of Solid State Interlocking Programs. In
Software Engineering and Formal Methods, Lecture Notes in Computer Science.
Springer, 2014.

21. P. James and M. Roggenbach. Encapsulating Formal Methods within Domain
Specific Languages: A Solution for Verifying Railway Scheme Plans. Mathematics
in Computer Science, 8(1), 2014.

22. P. James, M. Trumble, H. Treharne, M. Roggenbach, and S. Schneider. OnTrack:
An open tooling environment for railway verification. In NFM’13, 2013.

23. T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31(1), 1989.

24. K. Kanso, F. Moller, and A. Setzer. Verification of safety properties in railway
interlocking systems defined with ladder logic. In AVOCS08. Glasgow University,
2008.

25. H. D. Macedo, A. Fantechi, and A. E. Haxthausen. Compositional model checking
of interlocking systems for lines with multiple stations. In NFM’17, 2017.

26. M. Nöllenburg. A survey on automated metro map layout methods. In Schematic
Mapping Workshop, 2014.

27. C. Parillaud, Y. Fonteneau, and F. Belmonte. Interlocking formal verification at
alstom signalling. In Proceedings of RSSR’19. Springer, 2019.

28. E. Tufte. Envisioning Information. Graphics Press, 1990.
29. B. Tversky, J. Morrison, and M. Betrancourt. Animation: Can it facilitate? Int.

Journal of Human-Computer Studies, 57(4), 2002.
30. A. Wolff. Drawing subway maps: A survey. Informatik - Forschung und Entwick-

lung, 22(1), 2007.
31. H.-Y. Wu, B. Niedermann, S. Takahashi, and M. Nöllenburg. A survey on comput-

ing schematic network maps: The challenge to interactivity. In The 2nd Schematic
Mapping Workshop, Vienna, Austria, 2018.

81

Probabilistic Activity Recognition For Serious
Games With Applications In Medicine

Elisabetta De Maria1, Thibaud L’Yvonnet2, Sabine Moisan2, and Jean-Paul
Rigault2

1 Université Côte d’Azur, CNRS, I3S, France edemaria@i3s.unice.fr
2 Université Côte d’Azur, INRIA Sophia Antipolis, France {thibaud.lyvonnet,

sabine.moisan, jean-paul.rigault}@inria.fr

Abstract. Human activity recognition plays an important role espe-
cially in medical applications. This paper proposes a formal approach to
model such activities, taking into account possible variations in human
behavior. Starting from an activity description enriched with event oc-
currence probabilities, we translate it into a corresponding formal model
based on discrete-time Markov chains (DTMCs). We use the PRISM
framework and its model checking facilities to express and check interest-
ing temporal logic properties (PCTL) concerning the dynamic evolution
of activities. We illustrate our approach on the model of a serious game
used by clinicians to monitor Alzheimer patients. We expect that such
a modeling approach could provide new indications for interpreting pa-
tient performances. This paper addresses only the model definition and
its suitability to check behavioral properties of interest. Indeed, this is
mandatory before envisioning any clinical study.

Keywords: activity description · probabilistic model · model checking
· serious games · bio-medicine

1 Introduction

In the last decades human behavior recognition has become a crucial research
axis [23] and is employed in many contexts, such as visual surveillance in public
places [19,5], smart homes [24], or pedestrian detection for smart cars [22,8]. A
recent application in the health domain are "serious games", used to evaluate
the performances of patients affected by neuro-degenerative pathologies such as
the Alzheimer disease [21]. Behavior, emotions, and performance displayed by
patients during these games can give indications on their disease.

A lot has been done, especially in computer vision, on simple action recogni-
tion [25], whereas we target complex activities, including several actions. In our
view, an activity consists in a set of scenarios that describe possible behavioral
variants. Therefore, recognition means to identify which scenario is running from
inputs produced by different types of sensors. Currently, we mostly use video
cameras but also binary sensors or audio signals. Our ultimate aim is to propose
a general (human) activity recognition system that helps medical practitioners
in monitoring patients with cognitive deficiencies.

82

2 E. De Maria et al.

All the scenarios of an activity are not equivalent: some are typical (thus
frequent) while others seldom happen; this is due to variations in the behavior
of the actors involved in the activity. To improve the analysis and interpretation
of an activity (e.g., a patient playing a serious game), we propose to quantify the
likelihood of these variations by associating probabilities with the key actions of
the activity description. The recognition process remains deterministic since, at
recognition time, only one scenario at a time will be played and recognized.

Our first contribution is a formal modeling framework where activities are
represented by (hierarchical) discrete-time Markov chains whose edges can be
decorated with probabilities. Markov chains are deterministic and do not impose
to associate a real duration with each action, contrary to, e.g., timed automata.
We can thus "master" the time in our activity models, restricting it to the
instants when some significant events occur, hence reducing the duration of
simulations or model checking. Furthermore, in the games that we address we can
have non homogeneous delays between actions and we do not want to consider
the smallest delay as the (minimal) time unit, since that would generate a huge
number of states in the model and model checking would not be feasible. Our
choice for using formal modeling and model checking is mainly motivated by
their ability to directly provide probabilities associated with classes of paths
and to test universal properties on the model, contrary to simulation techniques
which only deal with existential properties.

As a second contribution, we have implemented discrete-time Markov chains
using the PRISM language [14]. We used temporal logic to encode some relevant
properties on their dynamical evolution, and we applied model checking tech-
niques [7] to automatically validate the models with respect to these properties
and to infer the probabilities of some interesting paths. When applied to the
recognition of serious games for Alzheimer patients, this technique can provide
medical doctors with indications to interpret patients’ performance.

We are developing a language for hospital practitioners to describe activities
they expect from their patients as programs representing all the envisioned paths
(possible combinations of actions from the patient or the environment), both
typical behaviors and marginal ones. Some actions will be performed for sure by
the patient (or the environment) and need no probabilities. Other ones depend
on the stage of Alzheimer of the patient. With these latter actions, practitioners
can associate a discrete probability level (e.g., low, medium, high...) or directly
a real number or weight. Hence, we can deduce how relevant the scenario played
by a patient is. For example, if a patient known to be healthy plays a "medium
cognition deficit" scenario, our system is able to spot this information. The same
goes if a "severe cognition deficit" patient plays a "healthy" scenario.

Before performing clinical tests on real patients, it is necessary to validate
our approach and to explore the kind of properties that model checking can
achieve, which is the focus of this paper.

The paper is organized as follows. Section 2 formally details discrete-time
Markov chains and their support in the PRISM model checker. Section 3 presents
a serious game case study used as a running example. Section 4 introduces the

83

Probabilistic Activity Recognition for Serious Games 3

PRISM encoding of this game as a discrete-time Markov chain and section 5 ap-
plies model checking to it. Finally, section 6 concludes and opens future research
directions.

2 The PRISM Model Checker

The probabilistic model checker PRISM [14] is a tool for formal modeling and
analysis of systems with random or probabilistic behavior. It has already been
used to describe human activity [20]. It supports several types of probabilistic
models, discrete as well as continuous. In this work we rely on discrete-time
Markov chains (DTMC), which are transition systems augmented with proba-
bilities. Their set of states represents the possible configurations of the system
being modeled, and the transitions between states represent the evolution of
the system, which occurs in discrete-time steps. Probabilities to transit between
states are given by discrete probability distributions. Markov chains are memo-
ryless, that is, their current state contains all the information needed to compute
future states. More precisely:

Definition 1. A Discrete-Time Markov Chain over a set of atomic propositions
AP is a tuple (S, Sinit, P, L) where S is a set of states (state space), Sinit ⊆ S
is the set of initial states, P : S×S → [0, 1] is the transition probability function
(where

∑
s′∈S P (s, s

′) = 1 for all s ∈ S), and L : S → 2AP is a function labeling
states with atomic propositions over AP .

An example of DTMC of a simple two-state game is depicted in Figure 1. In
this game, the player has to press a button as many times as she wishes.

0 1not press [p=0.5]

press [p=0.5]

release [p=1]

Fig. 1: DTMC representing a simple press button game. Each edge is labelled
with both an action and the corresponding probability.

2.1 PRISM Modeling Language

PRISM provides a state-based modeling language inspired from the reactive
modules formalism of [2]. A model is composed of a set of modules which can
interact with each other. The state of a module is given by the values of its local
variables and the global state of the whole model is determined by the local
states of all its modules. The dynamics of each module is described by a set
of commands of the form: []guard → prob1 : update1 + ... + probn : updaten;
where guard is a predicate over all the variables of the model, corresponding to
a condition to be verified in order to execute the command, and each update

84

4 E. De Maria et al.

indicates a possible transition of the model, achieved by giving new values to
variables. Each update is assigned a probability and, for each command, the
sum of probabilities must be 1. The square brackets at the beginning of each
command can either be empty or contain labels representing actions. These
actions can be used to force two or more modules to transit simultaneously. The
PRISM code for the DTMC of Figure 1 is shown in Algorithm 1. In this code,
the unique integer variable y represents the state of the player, it ranges over
{0, 1}. Its initial value is 0. When the guard y = 0 is true, the updates (y′ = 0)
and (y′ = 1) and their associated probabilities state that the value of y remains
at 0 with probability 0.5 and switches to 1 with probability 0.5. When y = 1,
the update (y′ = 0) with probability 1 states that y switches back to 0.

Finally, PRISM models can be extended with rewards [15], associating real
values with model states or transitions. An example of reward is given at the end
of Algorithm 1: each time y = 1 (button pressed), the reward is incremented.

Algorithm 1 PRISM code for Figure 1 DTMC.
dtmc //Discrete-Time Markov Chain
module good_answer_game
y: [0..1] init 0;
//Commands
[] y=0 -> 0.5:(y’=0) + 0.5:(y’=1); // y’ corresponds to y in the next instant
[] y=1 -> 1:(y’=0);
endmodule
rewards "y"
y=1: 1;
endrewards

2.2 Probabilistic Temporal Logic

The dynamics of DTMCs can be specified in PRISM thanks to the PCTL (Prob-
abilistic Computation Tree Logic) temporal logic [10]. PCTL extends the CTL
logic (Computation Tree Logic) [7] with probabilities. The following state quan-
tifiers are available in PCTL: X (next time), F (sometimes in the future), G
(always in the future), and U (until). Note that the classical path quantifiers
A (forall) and E (exist) of CTL are replaced by probabilities. Thus, instead of
saying that some property holds for all paths or for some paths, we say that
a property holds for a certain fraction of the paths [10]. The most important
operator in PCTL is P, which allows to reason about the probability of event
occurrences. As an example, the PCTL property P= 0.5 [X (y = 1)] holds in
a state if the probability that y = 1 is true in the next state equals 0.5. All the
state quantifiers given above, with the exception of X, have bounded variants,
where a time bound is imposed on the property. Furthermore, in order to com-
pute the actual probability that some behavior of a model occurs, the P operator
can take the form P=?. For instance, the property P =? [G (y = 0)] expresses
the probability that y always equals 0.

85

Probabilistic Activity Recognition for Serious Games 5

PRISM also supports properties on the expected values of rewards. The R
operator allows to retrieve reward values. Additional operators have been intro-
duced to deal with rewards: we mainly use C (cumulative-reward). The property
C<=t corresponds to the reward accumulated along a path until t time units
have elapsed. PRISM provides model checking algorithms [7] to automatically
validate DTMCs over PCTL properties and reward-based ones. On demand, the
algorithms compute the actual probability of some behavior of a model to occur.

3 Motivation and Case Study

For non experts in computer science, we propose a language to describe activities
to recognize in real-time. It offers usual instructions such as parallel execution,
conditional, or repetition. Most instructions may have associated weights in the
form of real numbers between 0 and 1 or using a discrete scale. These weights
will be digitized (if they are discrete) and normalized to obtain probabilities. In
this paper we do not provide a full description of the language, which is still
under development, but we simply illustrate its use with an example of a serious
game (see listing 1.1).

Serious games constitute a domain in which real-time activity recognition is
particularly relevant: the expected behavior is well identified and it is possible
to rely on different sensors (biometric and external) while playing the game. In
the health domain, they can be used to incite patients to practice physical exer-
cises [6], to train medical staff with engaging activities [4], or to help diagnose
and treat patients [3,9]. When formally modeling a diagnosis game, a user can
associate probabilities with instructions to represent a healthy or a pathological
behavior. These probabilities are initially defined according to physicians past
experience. Properties can then be written to extract relevant data, to be com-
pared first, with experimental results in order to refine the model and ultimately,
with real patients results.

After discussions with medical doctors, we identified three prospective uses
for our approach:

– Evaluate a patient. If a patient comes for the first time to get a diagnosis,
we can compare her results to a reference model representing a "healthy"
patient behavior. Our approach gives us a fairly good idea of what such a
healthy behavior is, as for example, the approximate number of good and
bad answers at the end or at a certain point of the game, the type of errors
made, or the probability for the patient to quit the game before its end. If
the patient’s results differ too much from the simulation results, it may be
due to a disease and the patient might need a full diagnosis from a doctor.

– Monitor a patient. For a given patient, a customized profile can be created
according to the results obtained during the first tests. Thus, from one session
to the next, her health improvement or deterioration could be monitored. If
the ratio of good/bad answers is increasing while the number of answered
questions is not decreasing, it may show an improvement. On the other hand,

86

6 E. De Maria et al.

if the ratio is decreasing or if the number of answered questions is decreasing,
it may show that the disease is progressing.

– Create a cohort of patients. Once a reference profile is validated, we can
use it to determine whether a new group of patients belongs to this specific
category. This process is similar to a screening test on a population as it
would only be a step before a definitive diagnosis; it is cheaper compared to
a full diagnosis for the whole population and faster thanks to the automation
of the process. For example, such tests will allow practitioners to shortlist
patients to apply a specific protocol on this cohort.

3.1 Case Study

As a use case, we consider a serious game to analyze the behavior of Alzheimer
patients: the Match Items game [21]. In this game, patients interact with a touch-
pad. They are asked to match a random picture displayed in the center of the
touch-pad with the corresponding element in a list of pictures (see Figure 2).

Fig. 2: Display of the Match Items game.

If the patient chooses the right picture, a happy smiley is displayed and a
new picture is proposed. Otherwise a sad smiley is displayed and the patient
is asked to try again. If the patient does not interact quickly enough with the
touch-pad (more than 10 seconds of inactivity), the game prompts her to choose
a picture. Whenever the patient exits the game zone, the game is aborted. The
game lasts at most five minutes. A simplified pseudo-code program describing
this game is given in Listing 1.1.

Initial: patient inside game_zone and patient presses_start_button
during 300s

console displays_picture
when [0.0005] patient exits game_zone
preempt { emit no_player; exit }

// main loop on each occurrence of the asks_to_choose event
every console asks_to_choose patient

switch
case [0.75] (patient selects_picture)

// patient selected something
switch

87

Probabilistic Activity Recognition for Serious Games 7

case [0.66] (console displays_happy_smiley)
// correct answer: new picture and continue loop
console displays_picture !! count: happy_smileys

case [0.33] (console displays_sad_smiley)
// wrong answer: loop keeping current picture
nothing !! count: sad_smileys

end switch
case [0.25] (console notifies_inactivity)

// patient did not react, continue with same picture
nothing !! count: non_interactions

end switch
end every

end when
end during
emit game_over

Listing 1.1: Serious game pseudo code description.

The game starts when the patient has been detected in the game zone and
presses the start button. The when clause introduces a preemption: the game
may abort prematurely, whatever its execution state is, if the patient leaves the
game zone before the normal end of the game; this is possible with Alzheimer
patients who may suffer from attention deficiency. The core of the game is de-
scribed via the probabilistic switch cases. The branches of a switch are ex-
clusive and their order is a priority order: the first branch whose awaited event
occurs executes its statements. A probability of occurrence may be associated
with a branch (indicated within square brackets in the pseudo-code).

Furthermore, the clinicians can indicate (through !! comments) significant
events that should be remembered and counted. For instance, the number of
happy smileys displayed during the game gives an interesting information about
a patient’s performance. Note that, in this example, the sum of the weights
in the probabilistic switch case and in the preemptive condition is not 1. A
normalization will be applied to obtain the probabilities for the formal model.
Thus, the user does not have to bother with numeric computations.

4 Serious Game Model

We model the behavior of a patient in this game using a discrete-time Markov
chain (DTMC). To the best of our knowledge, DTMC models are barely used for
the description of human behavior, although we can cite [11]. In computer vision,
Hidden Markov Models (HMMs) are a popular approach for the description of
activities [1,12]. However, PRISM and most of the other probabilistic model
checkers do not allow to check temporal logic properties over HMMs.

Due to a limitation in PRISM, we explicitly represent all the possible states in
the model. This limitation concerns looping through a state: in PRISM Markov

88

8 E. De Maria et al.

chains, we cannot put a limit on the number of times we can loop through a
state. This means that, even if we give a low probability to the loop transition,
there will always be a risk for a simulation to never quit this loop (fairness is
not automatically imposed). By explicitly representing all possible states of the
game, we avoid this issue. Since the game activity lasts at most five minutes (or
three-hundred seconds), we know that there will be a finite number of states in
our chain. Thus, in the PRISM model, we made the assumption that a patient
needs at least three seconds to select a picture (minimum time needed to think
of which picture to choose and to touch the screen to select it).

4.1 Model Design

With the previous assumption, we can translate the time constraint of three-
hundred seconds in a maximum number of actions (or events) that can happen
in a scenario. If the patient keeps on selecting pictures, a smiley (happy or sad)
is displayed. We call this event selection and it cannot happen more than a
hundred times in a row (300/3 = 100). On the other hand, if the patient does
not interact with the game for ten seconds, the system displays a message (event
notifies_inactivity in listing 1.1). We call this event inactivity and it cannot
happen more than thirty times in a row(300/10 = 30).

To represent all combinations of these two events, we picture a right-angle
triangle (Figure 3a). The edge of length one hundred (representing the scenario
of a succession of selection) and the edge of length thirty (representing the
scenario of a succession of inactivity) form the perpendicular sides of the triangle.
Each state of this triangle, except those on the hypotenuse, have three different
possible transitions, represented in Figure 3b.

(a) Combinations of events triangle. (b) Possible state transitions for states
symbolizing the game session.

Fig. 3: Concepts of the model of activity.

According to Figure 3b, a state can either increment selection and move on
the selection axis, or increment inactivity and move on the inactivity axis. To
represent the action of the patient leaving the game before the end of the five
minutes (which could be detected by a camera) we use a Boolean variable called
quit_game. If this variable is true, the state previously reached in the triangle
is considered as the final state of the game session.

All states on the hypotenuse represent the end of the five minutes of the
game. The only possible transition from them is equivalent to quit_game.

89

Probabilistic Activity Recognition for Serious Games 9

4.2 PRISM Implementation

The model is composed of a single module called "Serious_game"3. In this mod-
ule, the location of the patient is represented by an integer variable with range
[0..2] called location: 0 represents the patient being in the room before playing, 1
the patient being in the gaming area, and 2 the patient being outside this area.

As previously described, the interaction of a patient with the game is rep-
resented as an integer variable with range [0..100] called selection. A value i
represents the fact that the patient had i interaction(s) with the game.

The event of the game displaying a message after ten seconds of inactivity is
represented as an integer variable with range [0..30] called inactivity. A value i
represents the fact that the game displayed the message i time(s).

To ease readability and re-usability of the module, each of the previous vari-
ables gets its maximum value defined outside the module in a global variable:
location_max, selection_max and inactivity_max, respectively.

The variables selection_max and inactivity_max are also used to determine
if a state belongs to the hypotenuse of the triangle mentioned before. To do
so, we solve the following equation (where dxe is the application of the ceiling
function to x, denoting the smallest integer greater or equal to x):

inactivity = d
(
− inactivity_max
selection_max

)
× action+ inactivity_maxe (1)

To take advantage of the rewards of PRISM, we use Boolean variables to
represent the other concepts.

– The event "a happy (resp., sad) smiley is displayed" for a good (resp., bad)
answer is represented by the variable happy_smiley (resp., sad_smiley).

– The event "the patient leaves the game area before the end of the five min-
utes" is represented by quit_game.

– The event "the console displays a message after ten seconds of inactivity" is
represented by non_interaction.

Only one of these variables at a time can be true. Each time a variable is
true, it means that the event it represents happened and the associated reward
is incremented. The rewards associated with these Boolean variables are the
following: happy_smiley is associated with Happy_smiley_reward, sad_smiley
with Sad_smiley_reward, non_interaction with Non_interaction_reward, and
quit_game with Leave_game_reward ; the amount of time spent in the game by
the patient is represented by Gaming_time.

The Gaming_time reward is more complex than the others because it in-
creases by three units for each good or bad answer and by ten units for each
inactivity message displayed by the console.

The state of the patient can go through different transitions only if it matches
one of the four different guards of the "Serious_game" module:

3 PRISM code at https://gitlab.com/ThibLY/activity-recognition-modeling

90

10 E. De Maria et al.

1. variable location is equal to 0, meaning the patient is in the room;
2. variable location is equal to 1, time_Is_Not_Over is true and quit_game is

false, meaning the patient is playing the game;
3. variable location is equal to 1 and time_Is_Over is true, meaning the patient

has played for the maximum time;
4. variable location is equal to 1 and quit_game is true, meaning the patient

leaved the game before the end of the maximum duration.

The PRISM code for the command associated with the second guard is given
in Listing 1.2, where p1 = 0.5/sum, p2 = 0.25/sum, p3 = 0.25/sum, and p4 =
0.0005/sum, with sum = 0.5 + 0.25 + 0.25 + 0.0005.

[acts] location=1 & !time_Is_Over & quit_game=false ->
// good answer
p1 : (selection’=selection+1) & (happy_smiley’=true) &

(sad_smiley’=false) & (inactivity_bool’=false) +
// bad answer
p2 : (selection’=selection+1) & (happy_smiley’=false) &

(sad_smiley’=true) & (inactivity_bool’=false) +
// inactivity
p3 : (inactivity’=inactivity+1) & (happy_smiley’=false)&

(sad_smiley’=false) & (inactivity_bool’=true) +
// game left
p4 : (quit_game’=true) & (happy_smiley’=false) &

(sad_smiley’=false) & (inactivity_bool’=false);

Listing 1.2: Excerpt from the Serious_Game module.

The global variable time_Is_Over is defined to ease the readability of the
module. It contains a Boolean expression to determine if the maximum number
of actions that a patient can perform is reached.

The state transitions performed in a simulation describe the patient’s be-
havior in a scenario. Some of these transitions have attached probabilities. The
different possible transitions for a patient are the following:

– if the first guard is true, location is updated to 1, meaning the patient enters
the gaming area;

– if the second guard is true, four different transitions can be taken with dif-
ferent probabilities: (i) the patient gives a good answer (with a weight of
0.5 for our tests); (ii) the patient gives a bad answer (weight 0.25); (iii) the
system asks the patient to choose a picture after ten seconds of inactivity
(weight 0.25); (iv) the patient leaves the game (weight 0.0005);

– if the third or fourth guard is true, location is updated to 2, meaning the
patient leaves the gaming area.

In the following section, as a theoretical example, we will assume that these
parameters represent a typical patient with mild cognitive impairment (MCI).

91

Probabilistic Activity Recognition for Serious Games 11

5 Temporal Logic Properties and Results

In the previous model, we encoded and tested several properties in PCTL. The
tests were run on a computer with eight processors (Intel(R) Core(TM) i7-
7820HQ CPU @ 2.90GHz) and 32GB RAM, running under the Fedora Linux
operating system.

Two kinds of properties may be defined: those to verify the model and those
oriented toward the medical domain, which may give indications to a practitioner
regarding a patient’s behavior.

5.1 Model Verification

One typical property of the model itself is that all the model scenarios must
reach the final state, which means that the variable location must eventually be
updated to 2. The following property verifies that this update occurs:

Property 1. What is the probability to reach the final state of the Markov chain?

P =?[F (location = location_max)]

If the result is below 1, there exists a possibility to never reach the final state.
This possibility only occurs if there is an error in Match Items game model. In
our case the result is 1.0; it is obtained in 0.002 seconds.

5.2 Medically Oriented Properties

Properties about interactions. The following properties evaluate the prob-
ability for a path to go through i occurrences of selection and j occurrences of
inactivity. The first three properties check the probability to end the game with
i = selection_max or j = inactivity_max or i in between 0 and selection_max
and j in between 0 and inactivity_max. The last property checks the probability
to leave the game before the end of the five minutes.

Property 2. What is the probability for a patient to never interact with the game
until the end of the duration of the game?

P =?[F (selection = 0) & (inactivity = inactivity_max)]

Property 3. What is the probability for a patient to interact with the game until
the end of the game without any interruption?

P =?[F (selection = selection_max) & (inactivity = 0)]

Property 4. What is the probability for a patient to start the game and to inter-
act with it forty-three times (not necessarily consecutively) and not to interact
with it eighteen times (not necessarily consecutive)?

P =?[F (selection = 43) & (inactivity = 18)]

Property 5. What is the probability for a patient to leave the game before the
maximum game duration?

P =?[F (quit_game = true)]

92

12 E. De Maria et al.

Discussion. The results for these properties are displayed in Table 1, together
with their computing time.

Property Result Time(seconds)
Property 2 8.5445× 10−19 0.026
Property 3 3.0508× 10−13 0.049
Property 4 2.3188× 10−2 0.03
Property 5 3.1364× 10−2 0.058

Table 1: Results from Property 3 to 5.

The probability obtained for Property 2 is rather low. This is due to the
fact that there is only one path leading to the state satisfying this property.
Moreover, this path only goes through low probability transitions.

Two observations can be made on the results of Property 3: (i) the proba-
bility is higher than the one of Property 2; (ii) this probability is low. The first
observation is due to the fact that the transition taken and repeated when this
property is verified has three times more chances to be taken over the one taken
to satisfy Property 2. The probability of Property 3 is pretty low because there
is only one path made of three hundred transitions that satisfies this property.

Property 4 checks the probability to reach one of the state representing the
end of the five minutes of the game. To give an example, a state which can only
be reached with paths composed of 43 transitions representing an interaction
and 18 transitions representing a non-interaction was chosen. The probability
for this property is higher than the one of Property 3. This is due to the fact
that this state can be reached by a large amount of paths.

The probability obtained for Property 5 is approximately 3% even though the
probability for the path to go through "quit_game=true" is five hundred times
lower than the probability to take the non-interaction transition. To satisfy this
property, all paths in which the transition quit_game is taken are considered.
Note that, if one increases the maximum duration of the game but keeps the
parameters of the model as they are, the result of Property 5 increases.

Possible medical significance. The results obtained from the above prop-
erties give several indications. In the case of a cohort selection based on this
model, the behavior described in Property 4 and Property 5 should be observed
quite rarely (respectively 2% and 3% of the cases). The behaviors described in
Property 2 and Property 3 must not be observed. If a cohort differs too much
on the frequency of these behaviors, the practitioners must discard or deeply
change it. Otherwise, the risk to perform a clinical test on the wrong sample of
population is too high.

Properties about quality of actions. These properties are relative to the
quality of the actions that can be performed. The first one provides an average
"score" for the model. The second and third ones give probabilities to follow
some specific paths in the model.

93

Probabilistic Activity Recognition for Serious Games 13

Property 6. What is the average amount of good responses given by patients
during their game sessions?

R{”Happy_smiley_reward”} =?[F (location = location_max)]

Property 7. What is the probability for a patient to choose the correct picture
exactly one time and to never choose a good one again until the end of the game?

P =?[(F happy_smiley = true) & (G ((happy_smiley = true) =>

(X G happy_smiley = false & quit_game = false)))]

Property 8. What is the probability for a patient to directly choose the right
picture, without choosing a wrong picture before?

P =?[F (selection = 1 & happy_smiley = true)]

Discussion. The results for these properties are displayed in Table 2a and 2b.

Reward Result Time(s)
Happy_smiley_reward 31 0.044
Sad_smiley_reward 15 0.019

Inactivity_bool_reward 15 0.042

(a) Results of Property 6.

Property Result Time(s)
7 3.3012× 10−12 2.046
8 6.6622× 10−1 0.007

(b) Results of Properties 7 and 8.

Table 2: Results for the properties concerning the quality of actions.

Property 6 can be written for Happy_smiley _reward, Sad_smiley_reward
and for Inactivity_bool_reward. According to its results, the average "score" for
a cohort of patients matching this model parameters should be 31 good answers
for 15 bad answers and there should be 15 inactivity messages before the end of
the session.

Property 7 was the longest one to compute. The complexity of this property
comes from the nesting of G operators. Property 8 gives the biggest probability
value compared to all others. Indeed, unlike Property 7, there is a huge amount
of scenarios that can validate it.

Possible medical significance. Still in the case of a cohort pre-selection, the
group of patients should obtain an average "score" similar to the one obtained
in Property 6. If the score differs too much from this result, the cohort must be
rejected. According to the result of Property 7, a patient from this group is not
expected to choose only one right answer and then stay without exiting until
the end of the game. On the other hand, according to the result of Property 8,
in this same group, it should be common to observe patients choosing the right
picture on the first try (66% of the cohort).

94

14 E. De Maria et al.

5.3 Cumulative Rewards and Simulations

This subsection gives an example of a property which shows the interest to per-
form simulations of the model. We use the PRISM "cumulative reward" facilities
to track how the model accumulates rewards over time. Properties using rewards
can include variables such as the one indicating the number of steps to perform
before checking the reward. This variable allows the use of the "run experiments"
feature of PRISM and the acquisition of graphs of results.

Property 9. What is the amount of happy smileys accumulated within i steps?

R{”Happy_smiley_reward”} =?[C <= i]

where i is the number of steps to perform before checking the reward. This prop-
erty is reused for Sad_smiley_reward, Inactivity_bool_reward, Gaming_time
and Leave_game_reward.

Fig. 4: Average model checking results for rewards related to good answers, bad
answers, non-interaction, and game leaving behavior.

In Figure 4, the rewards for good answers, bad answers, and non-interactions
have a linear increase until they reach a plateau. The values reached by the
rewards are the ones obtained in Property 6. The reward for the action of leaving
the game is almost equal to zero. This is because this reward can be incremented
only once in a run and that there is only 3% of the paths (see Property 5) where
a patient may leave the game before its maximum duration.

Fig. 5: Average duration of the game obtained with model checking.

95

Probabilistic Activity Recognition for Serious Games 15

In Figure 5, the average game duration is slightly under 300 seconds. This
is due to the paths where a patient may leave the game before the maximum
duration. This shows that, although Equation 1 in section 4 implies an approx-
imation with the ceiling function, the patients leaving the game are lowering
the average enough to bring it just under the maximum expected value. As a
final observation, the game duration reaches the plateau around the seventy-fifth
step. This is due to the fact that most of the paths go through non-interaction
transitions several times. Should they not go through these transitions at all,
the plateau might have been reached around the 100th step.

In Figure 6a, over 100 simulations, some of them (in blue/thin black in the
figure) reach a maximum value which is above three-hundred seconds (still due
to the approximation in Equation 1). Among these 100 simulations, some do not
reach 300 seconds, one of them (in red in Figure 6a) even never increases and
stays at 0. These simulations follow the paths where a modeled patient leaves
the game before the end of the maximum duration. This experiment illustrates
the results obtained with model checking (Property 5 and 6).

(a) Duration of the game over 100 runs. (b) Accumulation of good answers over
100 runs.

Fig. 6: Experiment results on the accumulation of rewards over 100 runs.

In Figure 6, over the 100 simulations, the results present a high variability
which cannot be foreseen with model checking. In this experiment, a maximum
value of 47 good answers for a minimum of 5 good answers is reached.

Globally, in Figure 6 as well as in Figure 4, there is no "preferred" time to
act during the game. This can be seen with the linear increase of each reward.
This is due to the current version of the model; in fact, the states representing
the game have homogeneous probabilities of transitions.

Due to the difficulty to see the different runs in Figure 6, a shell and a
Python scripts were written to retrieve raw data from simulations. These data
are used in Figure 7 to display the frequency of good answers over 10,000 runs.
In this figure, the distribution of the frequency of good answers at the end of the
game can be approximated by a normal distribution of mean µ = 31.2131. This
result is coherent with the result of Property 2. It can be stated that a patient
represented by this model is more likely to give around 31 good answers rather
than 40 or 25 ones.

For medical doctors to use these results, a range of acceptance must be de-
fined experimentally for the game. A patient supposedly represented by this

96

16 E. De Maria et al.

Fig. 7: Frequency of good answers over 10,000 runs (in blue/grey) and its fitting
normal distribution with µ = 31.2131 and σ2 = 43.9271 (in red/black).

model who gets results that are out of the range of acceptance can be inter-
preted in two different ways: Either the patient is not matching the model at all
(improvement in the patient’s behavior or wrong categorization of the patient) or
the patient actually belongs to the group of patients represented by this model,
but the model itself needs adjustments to better represent this group.

6 Conclusions and Future Work

In this paper, we target complex activity recognition, which remains a challeng-
ing research area [13] to obtain viable recognition systems. We propose a formal
approach based on discrete-time Markov chains to model human activities. Im-
portant properties of such models can be automatically verified thanks to model
checking. The technique we propose complements the main existing approaches
in the field of activity recognition. Indeed, these approaches seldom address for-
mal verification issues. Some work on human activity recognition relies on online
model checking [16,17]. Probabilistic model checking can be used to debug ac-
tivity models [18]. In our case, we use probabilities to explore paths associated
with different behaviors.

Thanks to our formal probabilistic modelling approach we can expect three
medically interesting outcomes. First, to evaluate a new patient before the first
diagnosis of doctors, we can compare her game performance to a reference model
representing a "healthy" behavior. Second, to monitor known patients, a cus-
tomized model can be created according to their first results, and, over time,
their health improvement or deterioration could be monitored. Finally, to pre-
select a cohort of patients, we can use a reference model to determine, in a fast
way, whether a new group of patients belongs to this specific category.

Our models need to be updated according to real experiment results. When
creating a reference model of a certain degree of Alzheimer disease, as for in-
stance the "mild cognitive impairment", practitioners may initially configure it
with probabilities deduced from their experience. This model will be verified and
compared to the average results of several experiments done by a known pop-
ulation of "moderate cognitive deficits" patients. We will then use the results
to adjust the model probabilities to obtain a more realistic model, providing a
more accurate prediction.

97

Probabilistic Activity Recognition for Serious Games 17

As a first step, we encoded a serious game for Alzheimer patients as a DTMC
in PRISM and we tested meaningful PCTL properties thanks to the PRISM
model checker. These properties include the use of rewards to quantify the per-
formances of patients.

The next step is to validate our approach as well as to test its scalability on
three other serious games selected with the help of clinicians. These games will
be represented by PRISM models, similar to the one presented in this paper,
and used in clinical experimentation. Once the models created, we will set up
different reference profiles (such as mild, moderate or severe Alzheimer) with
the participation of clinicians. Then, several groups of patients will play these
games. Their results will be recorded and used to adjust our initial models.

The ultimate goal is to integrate the model checking approach proposed in
this paper into a medical monitoring system designed with the help of clinicians.

Acknowledgements. This work is part of the Ph.D. thesis of Thibaud L’Yvonnet.
We thank the French Provence-Alpes-Côte d’Azur region for the financial sup-
port.

References

1. Ahouandjinou, A.S., Motamed, C., Ezin, E.C.: A temporal belief-based hidden
Markov model for human action recognition in medical videos. Pattern Recognition
and Image Analysis (2015)

2. Alur, R., Henzinger, T.: Reactive modules. Formal Methods in System Design
(1999)

3. Atkinson, S.D., Narasimhan, V.L.: Design of an introductory medical gaming en-
vironment for diagnosis and management of parkinson’s disease. In: Trendz in
Information Sciences Computing(TISC) (2010)

4. Buttussi, F., Pellis, T., Cabas-Vidani, A., Pausler, D., Carchietti, E., Chittaro, L.:
Evaluation of a 3D serious game for advanced life support retraining. Int. Journal
of Medical Informatics (2013)

5. Chamasemani, F.F., Affendey, L.S.: Systematic review and classification on video
surveillance systems. Int. Journal of Information Technology and Computer Sci-
ence(IJITCS) (2013)

6. Chittaro, L., Sioni, R.: Turning the classic snake mobile game into a location–based
exergame that encourages walking. In: Persuasive Technology. Design for Health
and Safety (2012)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
8. Du, X., El-Khamy, M., Lee, J., Davis, L.: Fused dnn: A deep neural network fusion

approach to fast and robust pedestrian detection. In: 2017 IEEE Winter Conf. on
Applications of Computer Vision (WACV) (2017)

9. Fleming, T.M., Bavin, L., Stasiak, K., Hermansson-Webb, E., Merry, S.N., Cheek,
C., Lucassen, M., Lau, H.M., Pollmuller, B., Hetrick, S.: Serious games and gam-
ification for mental health: Current status and promising directions. Frontiers in
Psychiatry (2017)

10. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
aspects of computing (1994)

98

18 E. De Maria et al.

11. Hassan, M.: A performance model of pedestrian dead reckoning with activity-based
location updates. In: 2012 18th IEEE Int. Conf. on Networks (ICON) (2012)

12. Jalal, A., Kamal, S., Kim, D.: A Depth Video-based Human Detection and Ac-
tivity Recognition using Multi-features and Embedded Hidden Markov Models for
Health Care Monitoring Systems. Int. Journal of Interactive Multimedia & Artifi-
cial Intelligence (2017)

13. Kim, E., Helal, S., Cook, D.: Human activity recognition and pattern discovery.
IEEE pervasive computing (2009)

14. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilis-
tic real-time systems. In: Proc. 23rd Int. Conf. on Computer Aided Verification
(CAV’11) (2011)

15. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Int.
School on Formal Methods for the Design of Computer, Communication and Soft-
ware Systems (2007)

16. Magherini, T., Fantechi, A., Nugent, C.D., Vicario, E.: Using temporal logic and
model checking in automated recognition of human activities for ambient-assisted
living. IEEE Transactions on Human-Machine Systems (2013)

17. Magherini, T., Parente, G., Nugent, C.D., Donnelly, M.P., Vicario, E., Cruciani, F.,
Paggetti, C.: Temporal logic bounded model-checking for recognition of activities
of daily living. In: Proc. of the 10th IEEE Int. Conf. on Information Technology
and Applications in Biomedicine (2010)

18. Nyolt, M., Yordanova, K., Kirste, T.: Checking models for activity recognition. In:
ICAART (2015)

19. Piciarelli, C., Canazza, S., Micheloni, C., Foresti, G.L.: A network of audio and
video sensors for monitoring large environments. In: Handbook on Soft Computing
for Video Surveillance. Chapman & Hall/CRC (2012)

20. Sadigh, D., Driggs-Campbell, K., Puggelli, A., Li, W., Shia, V., Bajcsy, R.,
Sangiovanni-Vincentelli, A.L., Sastry, S.S., Seshia, S.A.: Data-Driven Probabilistic
Modeling and Verification of Human Driver Behavior. In: Formal Verification and
Modeling in Human-Machine Systems, AAAI Spring Symposium (FVHMS) (2014)

21. Tran, M.K.P., Brémond, F., Robert, P.: Assistance for older adults in serious game
using an interactive system. In: 4th Int. Conf. on Games and Learning Alliance
(GALA) (2015)

22. Ujjwal, U., Dziri, A., Leroy, B., Bremond, F.: Late Fusion of Multiple Convolutional
Layers for Pedestrian Detection. In: 15th IEEE Int. Conf. on Advanced Video and
Signal-based Surveillance (AVSS) (2018)

23. Vrigkas, M., Nikou, C., Kakadiaris, I.A.: A review of human activity recognition
methods. Frontiers in Robotics and AI (2015)

24. Weerachai, S., Mizukawa, M.: Human behavior recognition via top-view vision for
intelligent space. In: Int. Conf. on Control, Automation and Systems (ICCAS)
(2010)

25. Zhang, H.B., Zhang, Y.X., Zhong, B., Lei, Q., Yang, L., Du, J.X., Chen, D.S.: A
comprehensive survey of vision-based human action recognition methods. Sensors
(5) (2019)

99

A Framework for Model Checking against CTLK
Using Quantified Boolean Formulas?

Emily Yu, Martina Seidl, and Armin Biere

Institute for Formal Models and Verification,
Johannes Kepler University Linz, Austria

{zhengqi.yu, martina.seidl, biere}@jku.at

Abstract. We present a novel bounded model checking (BMC) tool
chain for multi-agent systems. This framework automatically translates
the verification of system models against properties formulated in com-
putation tree logics with epistemic modalities (CTLK) into quantified
Boolean formulas (QBFs). Our framework exploits recent QBF tech-
nology for solving those verification problems and for certifying the re-
sult, making the implementation of a dedicated CTLK solver obsolete.
The translation to QBF is based on existing theoretical work and im-
plemented in our novel tool MCMASqbf which extends the open-source
model checker MCMAS. First experimental results are very promising
and indicate the practical feasibility of our approach. Furthermore we
provide novel benchmarks to the QBF community.

Keywords: Bounded Model Checking · QBFs · Multi-agent Systems

1 Introduction

Multi-agent systems (MAS) are nowadays applied in various fields to describe
complex systems. For example, MAS are used to formalize the interactions of dif-
ferent components that act independently [8]. To verify their correctness, Com-
putation Tree Logic with knowledge (CTLK) has been introduced [10]. Besides
temporal operators like “Always”, “Until”, and “Finally”, CTLK also includes
formulas with knowledge modalities Kiφ expressing that “Agent i knows φ”.

With CTLK it becomes possible to perform model checking for MAS [13].
Model Checking [1, 5, 6] is an important technique for verifying safety-critical
systems against properties expressed in temporal logics like LTL or CTL. To
deal with the so-called state explosion problem of model checking, SAT-based
bounded model checking (BMC) [3] was introduced. To obtain more compact
encodings of BMC problems than possible with SAT, encodings of BMC to
quantified Boolean formulas (QBFs) have been presented [7]. Such encodings
exploit the power of existential and universal quantifiers to avoid duplications
of formula parts.

? This work was supported by by the Austrian FWF grant W1255-N23 and the LIT
AI Lab funded by the State of Upper Austria.

100

2 Yu et al.

ISPL file MCMASqbf
QCIR file

Prenexing + Cleansing

QBF SolverCertificate (AIGER)SAT Solver
TRUE/FALSE

cleansed qcir

SAT/UNSAT

Fig. 1: The complete MCMASqbf tool chain.

In this paper, we present a fully automatic tool chain for verifying descrip-
tions of multi-agent systems against properties in CTLK. Therefore, we imple-
mented MCMASqbf for translating such BMC problems to QBFs building upon
the bounded semantics of CTLK introduced in [16].

2 The MCMASqbf Tool Chain

Our tool MCMASqbf [14] extends MCMAS [12], an open-source model checker for
the verification of multi-agent systems supporting various temporal epistemic
logics. We reused the parser of MCMAS to obtain the interpreted system data
structures based on which we generate the QBF encodings. We implemented the
translation of bounded semantics of CTLK into QBFs based on the theoretical
work in [16] which includes both existential and universal fragments of the logic.
As an approximation to unbounded model checking, the bounded semantics
considers a finite state space where each path in the system is restricted to a
length of k. However, in the verification process the search space is extended
progressively as the formula is evaluated.

The input of MCMASqbf is an ISPL file which contains a description of the
system and a CTLK formula for the property to be checked. ISPL is an agent-
based, modular language based on the interpreted systems [9] formalism com-
monly used for MAS. Our extension is invoked with parameters

-QBFbmc [k] [QCIR-File] [ISPL-File],

where k is a value specifying the bound followed by an ISPL file and a QCIR
output file for the QBF. Our tool MCMASqbf is embedded in the tool chain
as shown in Figure 1. It produces QBFs in the most general variant of the
QCIR format [11], i.e., in non-prenex form which allows to position quantifiers
arbitrarily within a formula. Since there is no state-of-the-art QBF solver that
supports this general format, an additional prenexing step is necessary to shift
the quantifiers to the front. For example, the formula ∀x∃yφ ∧ ∀a∃bψ has to
be rewritten to ∀a, x∃b, y(φ ∧ ψ). Therefore, we implemented a simple tool that
performs not only quantifier shifting, but also the translation to the cleansed
QCIR format that requires the names of the Boolean variables to be numbers
and not strings. Now the QBF can be passed to any QBF solver that is able to
process formulas in the cleansed QCIR format. We applied the Quabs [15] that
can not only decide the truth value of the formula but also produce certificates.

101

A Framework for CTLK Model Checking with QBF 3

These certificates are And-Inverter-Graphs (AIGs) [4] representing the solution
to the BMC problem, and can be checked by a SAT solver for increasing trust
in the QBF solver. For this purpose, we use the SAT solver PicoSAT [2].

3 Case Study

As a case study, we consider the popular Train-Gate-Controller (TGC) exam-
ple [10]. In this scenario, there are multiple trains on different tracks and a
controller. The tracks intersect at one tunnel which has red-green lights con-
trolled by the controller, and only one train can operate in the tunnel at a time
when the light is green. The following code snippet describes this scenario for
one train modeled in ISPL:

Agent train1
Vars:
state: {wait, tunnel, away};
end Vars
Actions = {enter, leave, nothing};
Protocol:
state = wait: {enter, nothing};
state = tunnel: {leave, nothing};
state = away: {nothing};
end Protocol
Evolution:
state = wait if state = away and Action = nothing;
state = tunnel if state = wait and Action = enter and Environment.Action=enter1;
state = away if (state = tunnel and Action = leave and Environment.Action=leave1)
or (state=wait and Action=nothing);
end Evolution
end Agent

An interpreted system typically contains a set of agents (train1, . . .) with
possible local states (wait, tunnel, away), actions (enter, leave, nothing), as
well as protocols and evolution functions for describing the system behavior. The
global states are composed of each agent’s local states. Further an initial state
is also defined in the ISPL description. To translate the model checking problem
into QBFs, we firstly need to encode the interpreted system as follows:

– state space: dlog |Li|e Boolean variables are needed for representing the local
states Li of agent i. The same number of variables is needed for the local
successor state. The global current state v = (ve, v1, ..., vN) and the global
successor state v′ = (v′e, v

′
1, ..., v

′
N) are vectors of local states where N is the

number of agents and e refers to the environment.
– actions: For the actions,

∑
i∈{e,1..,N}dlog |Acti|e Boolean variables are needed.

– transition relation: For each agent, the protocol function and evolution func-
tion are encoded symbolically using vi and v′i. The global transition relation
is the composition of protocol and evolution functions based on v and v′.

We have implemented the encoding presented in [16] and our implementation
allows to generate a QBF as a QCIR file which then can be solved and certified
by existing QBF solvers. The property holds if the verification result of the QBF
solver shows the formula is satisfied, and vice versa.

102

4 Yu et al.

Table 1: Experimental results obtained for the Train-Gate-Controller case study.

N k φqbf (gates) C ttotal(s) tqs(s) tsat(s)

3 5 30616 990 0.961 0.056 0.023

3 10 110971 2945 3.445 0.222 0.088

3 15 252226 5950 8.018 0.673 0.201

3 20 464881 10005 14.942 1.178 0.370

5 5 57695 2354 1.785 0.112 0.050

5 10 206735 7299 6.469 0.487 0.156

5 15 464875 14994 15.057 1.261 0.359

5 20 848615 25439 28.560 2.820 0.685

8 5 100482 5480 3.127 0.226 0.084

8 10 357472 17460 11.299 0.982 0.280

8 15 798762 36240 26.195 2.794 0.627

8 20 1449852 61820 51.409 6.882 1.259

10 5 140217 9747 4.607 0.557 0.114

10 10 495812 30452 16.771 2.247 0.389

10 15 1101507 62707 38.680 6.073 0.871

10 20 1988802 106512 76.313 14.219 1.578

We verify the following property in our case study: along all paths in the
system, it is always the case that if train1 is in the tunnel then it knows that
the other trains cannot be operating in the tunnel at the same time. In CTLK,
this property can be expressed as follows:

φ = AG (in tunnel1 → Ktrain1

N∨

i=2

¬in tunneli)

To evaluate the performance of the tool chain, we ran several experiments on
an Intel R© Coretm i7-2600 machine with 3.40GHz CPU and 16GB RAM running
Ubuntu v18.04.2 (Linux kernel v4.15). We evaluated the bounded model checking
problem with different values of k, and in order to test the scalability of the
framework, we ran experiments with 5, 8, and 10 trains (we use N to represent
the number of trains).

Table 1 reports the results of our case study. The obtained cleansed QBFs in
prenex form contain up to 2M gates in the QCIR format, while the certificates in
AIGER contain only up to 100K gates plus the inputs and outputs related to the
QBF variables (C in Table 1). The solving time ttotal includes the time for the
whole tool chain including the QBF solving time tqs and the time for checking
the certificates tsat. While the solving times are quite small, much time is needed
for the encoding and the cleansing. Here, many optimizations are possible.

4 Discussion

We presented a complete tool chain for solving bounded model checking of multi-
agent systems against CTLK specifications using QBF solving technology. First

103

A Framework for CTLK Model Checking with QBF 5

experiments are very promising, allowing us not only to solve the BMC problems
but also to obtain quite small certificates from the QBF solvers. Further, this
work provides practical benchmarks in the general QCIR format to the QBF
community.

As future work, we plan to integrate the model checker with a QBF solver
more tightly using an incremental QBF approach to speed up model checking.
The translation algorithm can also be optimized further, by for instance picking
an arbitrary value of k as a starting point and increase k step-wise in a loop.
Furthermore, sub-formulas can be encoded separately then verified, and the ver-
ification results can be cached in order to speed up the whole model checking
process when applied in a real-world setting.

References

1. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
2. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. Tech.

rep., FMV Reports Series, Inst. FMV, JKU Linz, Austria (2010)
3. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without

bdds. In: Proc. of TACAS’99. LNCS, vol. 1579, pp. 193–207. Springer
4. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Tech. rep., FMV

Reports Series, Inst. FMV, JKU Linz, Austria (2011)
5. Clarke, E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Checking.

MIT press (2018)
6. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model

Checking. Springer (2018)
7. Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: Proc.

of SAT’05. LNCS, vol. 3569, pp. 408–414. Springer (2005)
8. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: A survey. IEEE Access

6, 28573–28593 (2018)
9. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.

MIT Press, Cambridge, MA, USA (2003)
10. van der Hoek, W., Wooldridge, M.J.: Tractable multiagent planning for epistemic

goals. In: AAMAS. pp. 1167–1174. ACM (2002)
11. Jordan, C., Klieber, W., Seidl, M.: Non-cnf QBF solving with QCIR. In: AAAI

Workshop: Beyond NP. AAAI Workshops, vol. WS-16-05. AAAI Press (2016)
12. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification

of multi-agent systems. In: CAV. LNCS, vol. 5643, pp. 682–688. Springer (2009)
13. Lomuscio, A., Raimondi, F.: The complexity of model checking concurrent pro-

grams against CTLK specifications. In: DALT. LNCS, vol. 4327, pp. 29–42.
Springer (2006)

14. MCMAS-QBF: (2019), shorturl.at/pFKQ9
15. Tentrup, L.: Non-prenex QBF solving using abstraction. In: Proc. of SAT’16.

LNCS, vol. 9710, pp. 393–401. Springer (2016)
16. Zhou, C., Chen, Z., Tao, Z.: QBF-based symbolic model checking for knowledge

and time. In: TAMC. LNCS, vol. 4484, pp. 386–397. Springer (2007)

104

Formal Semantics Extraction
from MIPS Instruction Manual

Quang Thinh Trac and Mizuhito Ogawa

Japan Advanced Institute of Science and Technology
{tracthinh, mizuhito}@jaist.ac.jp

Abstract. This study proposes a semi-automatic extraction of the for-
mal semantics of MIPS architecture from the pseudocode description in
MIPS instruction manual. Among 127 collected instructions, we focus
on the 63 instructions of the CPU category. After manually preparing
21 primitive functions in the pseudocode description, their semantics are
successfully generated as Java methods, which are unified to a dynamic
symbolic execution tool SyMIPS. We perform an empirical study on 3219
MIPS32 IoT malware collected from ViruSign and observe that SyMIPS
successfully traces 2412 samples, in which SyMIPS finds the dead condi-
tional branch, e.g., in DDOS-Y. The rest is interrupted by either timeout,
stack overflow, or exceptions, which current SyMIPS does not cover.

Keywords: Dynamic Symbolic Execution, MIPS32, IoT malware

1 Introduction

Symbolic execution has been developed mostly for high-level programming lan-
guages, e.g., JPF-SE [1] for Java and Klee [4] for C. Recently, symbolic execution
tools are extended to binary code. An early example is McVeto[11], followed
by KLEE-MC[2], Mayhem[5], MiAsm[6], CoDisasm[3], BE-PUM[9], Angr[10],
Corana[13]. Most of them are developed for x86 except Corana for ARM.

When we consider IoT devices, various architectures exist. Smaller CPUs,
MPU (Micro Processor Unit), are either 32 bits or 64 bits, e.g., ARM Cortex-A,
MIPS32, MIPS64, MC68000, Sparc (by Fujitsu), PowerPC, and x86. Controllers,
MCU (Micro Controller Unit), are up to 32 bits, e.g., ARM Cortex-M7, Z80, PIC,
AVR, MSP430 (TI), and RL78 (Runesas). When we develop binary symbolic
execution tools, the large variation forces huge human effort. Good news is:

1. Each instruction set often has a concrete manual in rigid English.
2. MPUs and MCUs have shallow caches and mostly do not allow out-of-order

execution. Avoiding multi-threads, weak memory models, and floating-point
arithmetic, the operational semantics framework simply becomes the transi-
tions on the environment consisting of memory, stack, registers, and flags.

3. Various debuggers and emulators are often available, which implement the
semantics of instruction sets.

105

2 QT. Trac and M. Ogawa

They suggest (semi-)automatic extraction of the formal semantics from English
manuals. Furthermore, by comparing with the execution between existing de-
buggers/emulators and the generated symbolic execution tool, the conformance
testing can resolve the ambiguity in natural language processing.

For extracting the semantics, the following three sections are essential.

– Format section shows the name of the instruction and its operands.
– Operation section shows how the environment is updated. Some instruction

sets also have the pseudo-code descriptions, e.g., x86 and MIPS.
– Flag Update section shows the change of the boolean condition. Some in-

struction sets have no flags, e.g., MIPS, and the condition is set on registers.

Following to BE-PUM for x86 [8] and Corana for ARM [13]), this study in-
vestigates a semi-automatic extraction of the formal semantics of MIPS instruc-
tions. Among MIPS variations, we focus on MIPS32 (release 5) from MIPS32
instruction set manual1, which has the emulator MARS. Among 127 collected
MIPS32 instruction specifications, we focus on 63 of the CPU category. After
preparing a Java template describing the operational semantics framework, we
manually prepare 21 primitive functions in the pseudocode description, which
successfully instantiate the Java template for all 63 instructions. The generated
Java code is inserted into a dynamic symbolic execution tool SyMIPS2. We per-
form an empirical study on 3219 MIPS32 IoT malware in ViruSign3 and observe
that SyMIPS successfully traces 2412 samples. The rest is interrupted by either
timeout, stack overflow, or exceptions, which current SyMIPS does not cover.
Note that SyMIPS finds the dead conditional branch, e.g., in DDOS-Y.

Related Work

The first trial of a formal semantics extraction appears for x86 [8] for extending
BE-PUM [9], which introduced the sentence-level similarity analysis to detect
flag updates. The experiment shows that among 530 collected specifications from
Intel Developer’s Manual4, Java method descriptions of 299 x86 instructions are
successfully generated by manually preparing 30 primitive functions, which not
only enlarged the BE-PUM support to the total 400 instructions but also found
5 human bugs in manually implemented 200 instructions.

The formal semantics extraction for ARM [13] is more challenging, since the
ARM manual is described only in English. By manually preparing 228 seman-
tics interpretation rules, the experiment shows that among 1039 collected ARM
Cortex-M specifications from ARM manual5, 662 instructions are successfully
processed. Note that both apply the conformance testing by using the existing
emulators, i.e., Ollydbg 6 for x86 and µVision7 for ARM.
1 https://www.mips.com/products/architectures/mips32-2
2 https://github.com/tracquangthinh/SyMIPS
3 https://www.virusign.com
4 https://www.felixcloutier.com/x86
5 https://developer.arm.com
6 http://www.ollydbg.de
7 http://keil.com/mdk5/uvision

106

Formal Semantics Extraction from MIPS Instruction Manual 3

2 Formal Semantics of MIPS

2.1 MIPS Architecture

MIPS is a RISC instruction set, which were introduced in 1985. MIPS assumes
a load/store architecture (or known as register-register architecture, in which
the memory access is limited to the load and store instructions. A conventional
MIPS processor contains the following components:

1. Registers: is a small set of high-speed storage cells inside the CPU. MIPS
provides 32 general-purpose registers.

2. Memory: is the 32-bits addressing space.
3. Stack: is taken as a special area of the memory.

In contrast to x86 and ARM, MIPS have no flags. Instead, it uses general reg-
isters for storing the boolean conditions. Furthermore, the MIPS instructions
except for the load/store, lb, sb, lw, sw, cannot directly access memory.

2.2 MIPS Instruction Manual

The specification of the MIPS instructions is collected and extracted from the
MIPS32 (release 5) instruction set manual. They are in the PDF format and
consist of four prime sections including format, purpose, description and
operation. Table 2.2 shows an example of the specification of instruction ADDI.
Among four sections, format and operation are used to obtain Java methods.

Format ADDI rt, rs, immediate

Purpose To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description The 16-bit signed immediate is added to the 32-bit value in GPR rs to
produce a 32-bit result.
– If the addition results in 32-bit 2’s complement arithmetic overflow,

the destination register is not modified and an Integer Overflow
exception occurs.

– If the addition does not overflow, the 32-bit result is placed into
GPR rt.

Operation temp ← (rs[31]||rs[31..0]) + sign extend(immediate)

if temp[32] 6= temp[31] then

SignalException(IntegerOverflow)

else

rt ← sign extend(temp[31..0])

endif

2.3 Java Methods as Formal Semantics

We describe the formal semantics of MIPS instructions by Java methods with a
Java class BitVec, originally prepared for Corana [13]. The value of the BitVec

class is a pair 〈bs, s〉, where bs is a 32-bit vector variable in the BitSet class
and s is a string variable that stores a symbolic value in the BitVector theory.
We manually prepare 21 primitive functions appearing in the pseudocode. An
example below is a generated Java method of the instruction ADDI

107

4 QT. Trac and M. Ogawa

public void ADDI(Character rt, Character rs,

int immediate){

BitVec temp = add(concat(val(rs).get(31),

val(rs).get(0, 31)), signExtend(immediate));

if(notEqual(temp.get(32), temp.get(31))){

signalException(IntegerOverflow);

} else { write(rt,signExtend(temp.get(0, 31))); }

}

3 Specification Extraction

3.1 Operation Extraction

The operation section describes the pseudo-code. It is the most important field
for extracting MIPS formal semantics and generating Java executable code. How-
ever, MIPS Instruction Set manual obeys general common knowledge on the
syntax and the semantics of the pseudo-code. Following to x86 formal semantics
extraction [8], we manually prepare a context-free grammar including 17 rules
for parsing the pseudo-code. We used ANTLR (ANother Tool for Language
Recognition)8 to generate a parser, which results the abstract syntax tree.

Representation of BitVector Theory String variables are used to store val-
ues in BitVector theory of the SMT format and the primitive functions compute
32-bit values. Below is an example of a primitive function and.

BitVec and(BitVec m, BitVec n) {

String symbolic = "(bvand "+ m.symbolic +

" " + n.symbolic + ")";

BitSet concrete = m.and(n);

return new BitVec(concrete, symbolic); }

3.2 Conformance Testing

JDart[7] is a dynamic symbolic tool built on the top of Java PathFinder[12].
After converting the pseudo-code to Java methods, we use JDart to generate
the test cases of Java methods to cover all feasible execution paths of MIPS
instructions. Then we apply the conformance testing by comparing the executed
results of Java methods and MARS9 - a trusted emulator of MIPS32.

1. Apply JDart for the symbolic execution on a generated Java method, and
generate test cases to cover its all feasible branches.

2. Execute the generated Java method and the instruction on the trusted em-
ulator MARS with all generated test cases, and compare their results.

8 https://www.antlr.org
9 http://courses.missouristate.edu/KenVollmar/mars

108

Formal Semantics Extraction from MIPS Instruction Manual 5

4 Dynamic Execution Tool: SyMIPS

A preliminary version of a dynamic symbolic execution tool SyMIPS10 (Symbolic
Execution for MIPS) adopts Capstone (as a single-step disassembler) and Z311

(as a backend SMT solver),

4.1 Environment Updates

SyMIPS updates the environment and the path condition when executing an in-
struction, based on the BitVec class and 21 primitive methods (Section 2.3). For
instance, ADDI r2, r3, 3 set r2 to r3 + 3 and updates symbolic values. For the
BitSet value ci and the symbolic values si with i ∈ {2, 3}, the pre-environment
preEnv r2 : 〈c2, s2〉; r3 : 〈c3, s3〉 is updated to the post-environment postEnv

r2 : 〈c3 + 3, ((sign extend 1)((extract 30 0)(bvadd (concat

((extract 31 31) r3)((extract 30 0) r3)) #x00000003)))〉
r3 : 〈c3 , s3〉

4.2 Path Conditions Generation

The path condition is updated when a conditional jump occurs. Returning to
the example above , we assume that the next instruction is beq r2 r4 offset

while offset is the destination of the jump instruction. This instruction beq

compares two registers r2 and r4, then if r2 equals to r4, it branches to the
offset. The path conditions of the true and false branches are updated as:

pctrue = pc ∧ (= ((sign extend 1)((extract 30 0)

(bvadd(concat ((extract 31 31) r3)

((extract 30 0) r3)) #x00000003))) r4)

pcfalse = pc ∧ (not (= ((sign extend 1)((extract 30 0)

(bvadd (concat ((extract 31 31) r3)

((extract 30 0) r3)) #x00000003))) r4))

4.3 SyMIPS versus BE-PUM, Corana

BE-PUM was originally implemented manually and later the formal semantics
extraction of 299 x86 instructions extends BE-PUM [8]. Compared to BE-PUM,
SyMIPS and Corana are generated from scratch and share the use of the BitVec
class. However, there are several differences:

10 https://github.com/tracquangthinh/SyMIPS
11 https://github.com/Z3Prover/z3

109

6 QT. Trac and M. Ogawa

1. ARM uses the flags and the conditional suffix to implement conditional ex-
ecutions. In contrast, MIPS only uses general registers.

2. ARM instructions treat 32-bit general registers as the word-size values and
do not require to access single bits during the execution. Meanwhile, MIPS
handles registers in the level of bits by producing get as a primitive function.
For instance, the ADDI instruction uses a conditional statement to decide
whether an overflow occurs. By using the get function, ADDI accesses the
31st and 32th single bits of the temporary variable temp.

5 Experiments and Results

5.1 SyMIPS Performance

We perform experiments on MIPS32 IoT malware (taken from ViruSign) to
see the performance of SyMIPS. Note that current SyMIPS implementation is
preliminary. We try 3219 samples on Ubuntu 18.04 with Intel Core i5-6200U
CPU, 2.30GHz and 8GB. The results are summarized below.

Types of Executions Number of samples

Finished 2412

Interrupted
Out of Memory 415

Jump to Kernel Space/ System Calls 79
Fail to read binary format 313

Total 3219

Average Size 178.8 KB

Range(seconds)Number of Samples
Size(KBs) Execution Time

Min Max Average Min Max Average

0 - 10 1658 0.5 638 165

1.21 991.22 17.46

10 - 20 941 30 763 111
20 - 30 155 47 198 138
30 - 40 36 59 240 153
40 - 50 154 121 301 200
50 - 60 74 142 1156 312
>60 201 124 531 292

5.2 Handling Dynamic Jumps by SyMIPS

Although IoT malware rarely uses obfuscation techniques, identifying the desti-
nation of indirect jumps is essential to understand the control structure.

0x401898 lw t9, -0x7fe0(gp)

0x40189c nop

0x4018a0 addiu t9, t9, 0x19bc

0x4018a4 jalr t9

0x4019c8 addiu sp, sp, -0x20

0x4019cc sw ra, 0x18(sp)

(a) Trace of the indirect jump

0x4004e8 slti v0, v0, 2

0x4004ec beqz v0, 0x40049c

0x4004f0 nop

0x4004f4 lw v1, 0x44(fp)

0x4004f8 addiu v0, zero, 1

(b) The true branch is UNSAT

110

Formal Semantics Extraction from MIPS Instruction Manual 7

Indirect Jump Example (a) shows an indirect jump jalr at 0x4018a4 in
ELF:Mirai-ACL. SyMIPS finds the destination 0x4019c8 by concolic testing.
Conditional Jump Example (b) shows a conditional jump beqz at 0x4004ec

in ELF:DDoS-Y. SyMIPS detects that the true branch is unsatisfiable. It always
goes to 0x4004f0 and the code fragment starting at 0x40049c is dead code.

6 Conclusion

We proposed a semi-automatic formal semantics extraction of MIPS32 instruc-
tions from their manual. Consequently, a preliminary version of a dynamic sym-
bolic execution tool SyMIPS for MIPS32 was presented. The experiments on
3219 IoT malware taken from ViruSign successfully analyzed 2412 samples, in-
cluding the detection of dead conditional branches, e.g., in DDOS-Y.
Acknowledgement This study is partially supported by JSPS KAKENHI
Grant-in-Aid for Scientific Research (B)19H04083. The original content was ac-
cepted as the master thesis [14].

References

1. S. Anand, C.S. Pasareanu, and W. Visser. JPF-SE: A Symbolic Execution Exten-
sion to Java PathFinder. TACAS, pp.134–138. 2007.

2. R. Anthony. Methods for Binary Symbolic Execution. Ph.D Dissertation, Stanford
University, December 2014.

3. G. Bonfante, J. Fernandez, JY. Marion, B. Rouxel, F. Sabatier, and A. Thierry.
CoDisasm: Medium Scale Concatic Disassembly of Self-Modifying Binaries with
Overlapping Instructions. ACM SIGSAC, pp.745–756, 2015.

4. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs. OSDI, 2009.

5. SK. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing Mayhem on Binary
Code. IEEE S&P, pp.380–394, 2012.

6. F. Desclaux. Miasm : Framework de reverse engineering. 2012.
7. K. Luckow, M. Dimjasevic, D. Giannakopoulou, F. Howar, M. Isberner, T. Kahsai,

Z. Rakamaric, and V. Raman. JDart: A Dynamic Symbolic Analysis Framework.
TACAS, pp.442–459, 2016.

8. H.L.Y. Nguyen. Automatic Extraction of x86 Formal Semantics from Its Natural
Language Description. Master’s Thesis, School of Information Science, JAIST,
March 2018.

9. M.H. Nguyen, M. Ogawa, and T.T. Quan. Obfuscation Code Localization Based
on CFG Generation of Malware. FPS, pp.229–247, 2015.

10. Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna. (State of) The Art
of War: Offensive Techniques in Binary Analysis. IEEE S&P, pp.138–157, 2016.

11. A. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen, and
T. Reps. Directed Proof Generation for Machine Code. CAV, pp.288–305. 2010.

12. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. IEEE
ASE, pp.3–11, 2000.

13. V.A. Vu and M. Ogawa. Formal Semantics Extraction from Natural Language
Specifications for ARM. FM, pp.465–483, LNCS 11800, 2019.

14. Q.T. Trac, Generating a Dynamic Symbolic Execution Tool from MIPS Specifia-
tions. Master’s Thesis, School of Information Science, JAIST, September 2019.

111

Author Index

A
Adjè, Assalè 71
Ameur, Yamine Ait 20
Archambault, Daniel 82

B
Biere, Armin 105
Bodeveix, Jean-Paul 54

F
Filali, Mamoun 54

J
James, Phillip 82

K
Khalifa, Dorra Ben 71

L
LỲvonnet, Thibaud 100

M
Maria, Elisabetta De 100
Martel, Matthieu 71
Mery, Dominique 20
Moisan, Sabine 100
Moller, Faron 82
Moraes, Rodrigo Saar de 37

N
Nadjm-Tehrani, Simin 37
Navarre, David 20

O
OR̀eilly, Liam 82

P
Palanque, Philippe 20
Pantekis, Filippos 82
Pantel, Marc 20

112

R
Rigault, Jean-Paul 100

S
Seidl, Martina 105
Singh, Neeraj 20

T
Tahar, Sofiène 2

W
Wang, Tiexin 54

Y
Yang, Zhibin 54
Yu, Emily 105
Yuan, Shenghao 54

Z
Zhou, Yong 54

